Some remarks on pythagorean real curve germs
dc.contributor.author | Campillo, Antonio | |
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.date.accessioned | 2023-06-20T17:11:31Z | |
dc.date.available | 2023-06-20T17:11:31Z | |
dc.date.issued | 1990-02-01 | |
dc.description.abstract | Let k be a real closed field. A real AP-curve (over k) is a 1-dimensional, excellent Henselian local real domain with residue field k. A 1-dimensional Noetherian local ring is Arf, if emb dim(B)=mult(B) for every local ring B infinitely near to A [ J. Lipman , Amer. J. Math. 93 (1971), 649–685]. For n≥1, the 2nth Pythagoras number p2n of a commutative ring A is the least p, 1≤p≤+∞, such that any sum of 2nth powers in A is a sum of no more than p2nth powers in A. A main purpose of this paper is to affirm the following conjectures proposed by Ruiz [J. Algebra 94 (1985), no. 1, 126–144]: Let A be a real AP-curve, and let A be Pythagorean (i.e., p2=1). Then (i) A is Arf. (ii) Every local ring infinitely near to A is Pythagorean. Actually, the authors obtain a finer result: For a real AP-curve A, the following assertions are equivalent: (1) A is Arf; (2) A is Pythagorean; (3) p2n=1 for some n; (4) p2n=1 for all n. Here, (2)(1) is exactly Conjecture (i) and (1)(2) reduces Conjecture (ii) to the obvious fact that, if A is Arf, every local ring infinitely near to A is Arf too. Of course, the result contains some additional insight into the study of Pythagoras's numbers, even of higher order, of real curve germs. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/19982 | |
dc.identifier.doi | 10.1016/0021-8693(90)90021-F | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/002186939090021F | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57918 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Algebra | |
dc.language.iso | eng | |
dc.page.final | 275 | |
dc.page.initial | 271 | |
dc.publisher | Academic Press | |
dc.relation.projectID | PB860062 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 512.717 | |
dc.subject.cdu | 511 | |
dc.subject.cdu | 511.55 | |
dc.subject.keyword | Arf domain | |
dc.subject.keyword | pythagorean real curve germ | |
dc.subject.ucm | Teoría de números | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1205 Teoría de Números | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Some remarks on pythagorean real curve germs | |
dc.type | journal article | |
dc.volume.number | 128 | |
dcterms.references | M. ARTIN, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sri. Publ. Math. 36 (1969), 23-58. E. BECKER, The real holomorphy ring and sums of 2nth powers, in “Géométrie Algébrique Réelle et Formes Quadratiques,” Vol. 959, Lecture Notes in Mathematics, Springer-Verlag, New York/Berlin, 1982. A. CAMPILLO, “Algebroid Curves in Positive Characteristic,” Vol. 959, Lecture Notes in Mathematics, Springer-Verlag, New York, 1980. J. LIPMAN, Stable ideals and Arf rings, Amer. J. Math. 93 (1971) 649-685. M. NAGATA, “Local Rings,” Interscience, New York, 1962. J. M. RUIZ, Pythagorean real curve germs, J. Algebra 94 (1985), 126-144. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 |
Download
Original bundle
1 - 1 of 1