Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Some remarks on pythagorean real curve germs

dc.contributor.authorCampillo, Antonio
dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T17:11:31Z
dc.date.available2023-06-20T17:11:31Z
dc.date.issued1990-02-01
dc.description.abstractLet k be a real closed field. A real AP-curve (over k) is a 1-dimensional, excellent Henselian local real domain with residue field k. A 1-dimensional Noetherian local ring is Arf, if emb dim(B)=mult(B) for every local ring B infinitely near to A [ J. Lipman , Amer. J. Math. 93 (1971), 649–685]. For n≥1, the 2nth Pythagoras number p2n of a commutative ring A is the least p, 1≤p≤+∞, such that any sum of 2nth powers in A is a sum of no more than p2nth powers in A. A main purpose of this paper is to affirm the following conjectures proposed by Ruiz [J. Algebra 94 (1985), no. 1, 126–144]: Let A be a real AP-curve, and let A be Pythagorean (i.e., p2=1). Then (i) A is Arf. (ii) Every local ring infinitely near to A is Pythagorean. Actually, the authors obtain a finer result: For a real AP-curve A, the following assertions are equivalent: (1) A is Arf; (2) A is Pythagorean; (3) p2n=1 for some n; (4) p2n=1 for all n. Here, (2)(1) is exactly Conjecture (i) and (1)(2) reduces Conjecture (ii) to the obvious fact that, if A is Arf, every local ring infinitely near to A is Arf too. Of course, the result contains some additional insight into the study of Pythagoras's numbers, even of higher order, of real curve germs.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19982
dc.identifier.doi10.1016/0021-8693(90)90021-F
dc.identifier.issn0021-8693
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/002186939090021F
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57918
dc.issue.number2
dc.journal.titleJournal of Algebra
dc.language.isoeng
dc.page.final275
dc.page.initial271
dc.publisherAcademic Press
dc.relation.projectIDPB860062
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.cdu512.717
dc.subject.cdu511
dc.subject.cdu511.55
dc.subject.keywordArf domain
dc.subject.keywordpythagorean real curve germ
dc.subject.ucmTeoría de números
dc.subject.ucmGeometria algebraica
dc.subject.unesco1205 Teoría de Números
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSome remarks on pythagorean real curve germs
dc.typejournal article
dc.volume.number128
dcterms.referencesM. ARTIN, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sri. Publ. Math. 36 (1969), 23-58. E. BECKER, The real holomorphy ring and sums of 2nth powers, in “Géométrie Algébrique Réelle et Formes Quadratiques,” Vol. 959, Lecture Notes in Mathematics, Springer-Verlag, New York/Berlin, 1982. A. CAMPILLO, “Algebroid Curves in Positive Characteristic,” Vol. 959, Lecture Notes in Mathematics, Springer-Verlag, New York, 1980. J. LIPMAN, Stable ideals and Arf rings, Amer. J. Math. 93 (1971) 649-685. M. NAGATA, “Local Rings,” Interscience, New York, 1962. J. M. RUIZ, Pythagorean real curve germs, J. Algebra 94 (1985), 126-144.
dspace.entity.typePublication
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoveryf12f8d97-65c7-46aa-ad47-2b7099b37aa4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizSancho17.pdf
Size:
197.89 KB
Format:
Adobe Portable Document Format

Collections