Growth and luminescence of elongated In2O3 micro- and nanostructures in thermally treated InN

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Amer Inst Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
Indium oxide elongated micro- and nanostructures have been grown by thermal treatment of InN powder. Chains of nanopyramids connected by nanowires, forming a necklace-like structure, as well as cubes and arrow-like structures consisting of a long rod with a micron size pyramid on the top, grow at temperatures in the range 600-700 degrees C in a catalyst free process. The structures have been characterized by scanning electron microscopy and cathodoluminescence.
(c) 2006 American Institute of Physics. This work has been supported by EU Marie Curie program (HPMT-CT-2001-00215) by MEC (Project No. MAT-2003-00455)and by CAM (Project No. GR/MAT 630-04). D.A.M acknowledges the Marie Curie fellowship in the frame of the HPMT-CT-2001-00215 project
Unesco subjects
1.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 2.X. Y. Kong and Z. L. Wang, Solid State Commun. 128, 1 (2003). 3.C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. (Weinheim, Ger.) 13, 1330 (2001). 4.C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou, Adv. Mater. (Weinheim, Ger.) 15, 143 (2003). 5.L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou, and B. Q. Hu, Appl. Phys. A 75, 687 (2002). 6.X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, and L. D. Zhang, Appl. Phys. A 74, 437 (2002). 7.F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, Nanotechnology 15, 596 (2004). 8.D. Maestre, A. Cremades, and J. Piqueras, J. Appl. Phys. 97, 044316 (2005). 9.E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). 10.J. Grym, P. Fernández, and J. Piqueras, Nanotechnology 16, 931 (2005). 11.P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005). 12.A. Urbieta, P. Fernández, and J. Piqueras, Appl. Phys. Lett. 85, 5968 (2004). 13.S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992). 14.Q. Guo, O. Kato, and A. Yoshida, J. Appl. Phys. 73, 7969 (1993). 15.S. Oh and T. Ishigaki, Thin Solid Films 457, 186 (2004). 16.H. Jia, Y. Zhang, X. Chen, J. Shu, X. Luo, Z. Zhang, and D. Yu,Appl. Phys. Lett. 82, 4146 (2003). 17.P. Guha, S. Kar, and S. Chaudhuri, Appl. Phys. Lett. 85, 3851 (2004). 18.Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, and Y. Qian, Cryst. Growth Des. 5, 147 (2005). 19.M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim, and S. K. Min, Thin Solid Films 279, 1 (1996). 20.H. Zhou, W. Cai, and L. Zhang, Appl. Phys. Lett. 75, 495 (1999). 21.M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Appl. Phys. Lett. 79, 839 (2001). 22.H. Cao, X. Qiu, Y. Liang, and Q. Zhu, Appl. Phys. Lett. 83, 761 (2003).