Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

dc.contributor.authorArqueros Martínez, Fernando
dc.contributor.authorGarcía Pinto, Diego
dc.contributor.authorMinaya Flores, Ignacio Andrés
dc.contributor.authorRosado Vélez, Jaime
dc.contributor.authorVázquez Peñas, José Ramón
dc.date.accessioned2023-06-18T06:51:38Z
dc.date.available2023-06-18T06:51:38Z
dc.date.issued2016-01
dc.description© 2016 IOP Publishing Ltd and Sissa Medialab srl. Artículo firmado por más de 10 autores. The IceCube Collaboration acknowledges the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF).; The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/AS-PERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No.; 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806 and PIOF-GA-2013-624803; and UNESCO.; The Telescope Array experiment is supported by the Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research on Specially Promoted Research (21000002) "Extreme Phenomena in the Universe Explored by Highest Energy Cosmic Rays" and for Scientific Research (19104006), and the Inter-University Research Program of the Institute for Cosmic Ray Research; by the U.S. National Science Foundation awards PHY-0307098, PHY-0601915, PHY-0649681, PHY-0703893, PHY-0758342, PHY-0848320, PHY-1069280, PHY-1069286, PHY-1404495 and PHY-1404502; by the National Research Foundation of Korea (2007-0093860, R32-10130, 2012R1A1A2008381, 2013004883); by the Russian Academy of Sciences, RFBR grants 11-02-01528a and 13-02-01311a (INR), IISN project No. 4.4502.13, and Belgian Science Policy under IUAP VII/37 (ULB). The foundations of Dr. Ezekiel R. and Edna Wattis Dumke, Willard L. Eccles, and George S. and Dolores Dore Eccles all helped with generous donations. The State of Utah supported the project through its Economic Development Board, and the University of Utah through the Office of the Vice President for Research. The experimental site became available through the cooperation of the Utah School and Institutional Trust Lands Administration (SITLA), U.S. Bureau of Land Management, and the U.S. Air Force. We also wish to thank the people and the officials of Millard County, Utah for their steadfast and warm support. We gratefully acknowledge the contributions from the technical staffs of our home institutions. An allocation of computer time from the Center for High Performance Computing at the University of Utah is gratefully acknowledged.
dc.description.abstractThis paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the searches performed. The smallest of the p-values comes from the search for correlation between UHECRs with IceCube high-energy cascades, a result that should continue to be monitored.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipSwedish Polar Research Secretariat, Sweden
dc.description.sponsorshipSwedish Research Council, Sweden
dc.description.sponsorshipSwedish National Infrastructure for Computing (SNIC), Sweden
dc.description.sponsorshipKnut and Alice Wallenberg Foundation, Sweden
dc.description.sponsorshipGerman Ministry for Education and Research (BMBF), Germany
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG), Germany
dc.description.sponsorshipHelmholtz Alliance for Astroparticle Physics (HAP), Germany
dc.description.sponsorshipResearch Department of Plasmas with Complex Interactions (Bochum), Germany
dc.description.sponsorshipFund for Scientific Research (FNRS-FWO) (Belspo)
dc.description.sponsorshipFWO Odysseus programme (Belspo)
dc.description.sponsorshipFlanders Institute to encourage scientific and technological research in industry (IWT) (Belspo)
dc.description.sponsorshipBelgian Federal Science Policy Office (Belspo)
dc.description.sponsorshipUniversity of Oxford, United Kingdom
dc.description.sponsorshipSwiss National Science Foundation (SNSF), Switzerland
dc.description.sponsorshipDanish National Research Foundation, Denmark (DNRF)
dc.description.sponsorshipCzech Science Foundation, Czech Republic
dc.description.sponsorshipCentre de Calcul IN2P3/CNRS, France
dc.description.sponsorshipCentre National de la Recherche Scientifique (CNRS), France
dc.description.sponsorshipConseil Regional Ile-de-France, France
dc.description.sponsorshipDepartement Physique Nucleaire et Corpusculaire, France
dc.description.sponsorshipDepartement Sciences de l'Univers (SDU-INSU/CNRS), France
dc.description.sponsorshipInstitut Lagrange de Paris (ILP) within the Investissements d'Avenir Programme, France
dc.description.sponsorshipBundesministerium fur Bildung und Forschung (BMBF), Germany
dc.description.sponsorshipFinanzministerium Baden-Wurttemberg, Germany
dc.description.sponsorshipHelmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany
dc.description.sponsorshipMinisterium fur Wissenschaft und Forschung, Germany
dc.description.sponsorshipNordrhein Westfalen, Germany
dc.description.sponsorshipMinisterium fur Wissenschaft, Germany
dc.description.sponsorshipForschung und Kunst, Germany
dc.description.sponsorshipBaden-Wurttemberg, Germany
dc.description.sponsorshipIstituto Nazionale di Fisica Nucleare (INFN), Italy
dc.description.sponsorshipIstituto Nazionale di Astrofisica (INAF), Italy
dc.description.sponsorshipMinistero dell'Istruzione, Italy
dc.description.sponsorshipdell'Universita e della Ricerca (MIUR), Italy
dc.description.sponsorshipGran Sasso Center for Astroparticle Physics (CFA), Italy
dc.description.sponsorshipCultuur en Wetenschap, Netherlands
dc.description.sponsorshipCETEMPS Center of Excellence, Italy
dc.description.sponsorshipMinistero degli Affari Esteri (MAE), Italy
dc.description.sponsorshipMinisterie van Onderwijs, Netherlands
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands
dc.description.sponsorshipStichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands
dc.description.sponsorshipNational Centre for Research and Development, Poland
dc.description.sponsorshipNational Science Centre, Poland
dc.description.sponsorshipPortuguese national funds, Portugal
dc.description.sponsorshipFEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal
dc.description.sponsorshipRomanian Authority for Scientific Research ANCS, Romania
dc.description.sponsorshipCNDI-UEFISCDI partnership projects, Romania
dc.description.sponsorshipMinister of National Education, Romania
dc.description.sponsorshipProgramme Space Technology and Advanced Research (STAR), Romania;
dc.description.sponsorshipSlovenian Research Agency, Slovenia
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipFEDER funds, Spain
dc.description.sponsorshipMinisterio de Educacion y Ciencia, Spain
dc.description.sponsorshipXunta de Galicia, Spain
dc.description.sponsorshipMarie Curie-IRSES/EPLANET
dc.description.sponsorshipUNESCO
dc.description.sponsorshipBelgian Science Policy under IUAP (ULB)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37178
dc.identifier.doi10.1088/1475-7516/2016/01/037
dc.identifier.issn1475-7516
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1475-7516/2016/01/037
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24426
dc.issue.number1
dc.journal.titleJournal of cosmology and astroparticle physics
dc.language.isoeng
dc.publisherIOP Publishing LTD
dc.relation.projectIDPIRSES (246806)
dc.relation.projectIDAUGER2FUTURE (328826)
dc.relation.projectIDCOSMICMAG (624803)
dc.relation.projectID14-17501S
dc.relation.projectIDLABEX ANR-10-LABX-63
dc.relation.projectIDPNC-IN2P3/CNRS
dc.relation.projectIDERA-NET-ASPERA/01/11
dc.relation.projectIDANR-11-IDEX-0004-02
dc.relation.projectIDERA-NET-ASPERA/02/11
dc.relation.projectID2013/08/M/ST9/00322
dc.relation.projectID2013/08/M/ST9/00728
dc.relation.projectIDHARMONIA 5 - 2013/10/M/ST9/00062
dc.relation.projectID20/2012
dc.relation.projectID194/2012
dc.relation.projectIDPN-II-RU-PD-2011-3-0145-17
dc.relation.projectID1/AS-PERA2/2012 ERA-NET
dc.relation.projectIDPN-II-RU-PD-2011-3-0062
dc.relation.projectID83/2013
dc.relation.projectIDVII/37 (ULB)
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordGalactic magnetic-field
dc.subject.keywordSurface detector
dc.subject.keywordSpectrum
dc.subject.keywordDeflections
dc.subject.keywordPerformance.
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleSearch for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
dc.typejournal article
dcterms.references[1] Pierre Auger collaboration, J. Abraham et al., Limit on the di_use ux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D 79 (2009) 102001 [2] Telescope Array collaboration, T. Abu-Zayyad et al., Upper limit on the ux of photons with energies above 1019 eV using the Telescope Array surface detector, Phys. Rev. D 88 (2013) 112005 [3] Pierre Auger collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Meth. A 523 (2004) 50 [4] Pierre Auger collaboration, A. Aab et al., The Pierre Auger Cosmic Ray Observatory, Nucl. Instrum. Meth. A 798 (2015) 172 [5] Telescope Array collaboration, T. Abu-Zayyad et al., The surface detector array of the Telescope Array experiment, Nucl. Instrum. Meth. A 689 (2013) 87 [6] Pierre Auger collaboration, J. Abraham et al., Observation of the suppression of the ux of cosmic rays above 4 _ 1019 eV, Phys. Rev. Lett. 101 (2008) 061101 [7] Telescope Array collaboration, T. Abu-Zayyad et al., The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment, Astrophys. J. 768 (2013) L1 [8] K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16 (1966) 748 [9] G.T. Zatsepin and V.A. Kuz'min, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 (1966) 78 [Pisma Zh. Eksp. Teor. Fiz. 4 (1966) 114] online at http://www.jetpletters.ac.ru/ps/1624/article 24846.pdf. [10] Pierre Auger collaboration, A. Aab et al., Searches for Anisotropies in the Arrival Directions of the Highest Energy Cosmic Rays Detected by the Pierre Auger Observatory, Astrophys. J. 804 (2015) 15 [11] Telescope Array collaboration, T. Abu-Zayyad et al., Correlations of the Arrival Directions of Ultra-high Energy Cosmic Rays with Extragalactic Objects as Observed by the Telescope Array Experiment, Astrophys. J. 777 (2013) 88 [12] G.R. Farrar, The Galactic magnetic _eld and ultrahigh-energy cosmic ray deections, Compt. Rendus Phys. 15 (2014) 339 [13] M. Haverkorn, Magnetic Fields in the Milky Way, in Magnetic Fields in Di_use Media, E.M. de Gouveia Dal Pino and A. Lazarian eds., Springer-Verlag Berlin Heidelberg (2015), pp. 483- 506 [14] Pierre Auger collaboration, A. Aab et al., Depth of maximum of air-shower pro_les at the Pierre Auger Observatory. I. Measurements at energies above 1017:8 eV, Phys. Rev. D 90 (2014) 122005 [15] R.U. Abbasi et al., Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode, Astropart. Phys. 64 (2014) 49 [16] IceCube collaboration, M.G. Aartsen et al., Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856 [17] K. Fang, T. Fujii, T. Linden and A.V. Olinto, Is the Ultra-High Energy Cosmic-Ray Excess Observed by the Telescope Array Correlated with IceCube Neutrinos?, Astrophys. J. 794 (2014) 126 [18] R. Moharana and S. Razzaque, Angular correlation of cosmic neutrinos with ultrahigh energy cosmic rays and implications for their sources, JCAP 08 (2015) 014 [19] J.A. Carpio and A.M. Gago, Impact of Galactic magnetic _eld modelling on searches of point sources via UHECR-Neutrino correlations [20] E. Waxman and J.N. Bahcall, High-energy neutrinos from astrophysical sources: An Upper bound, Phys. Rev. D 59 (1999) 023002 [21] K. Mannheim, R.J. Protheroe and J.P. Rachen, On the cosmic ray bound for models of extragalactic neutrino production, Phys. Rev. D 63 (2001) 023003 [22] IceCube collaboration, M.G. Aartsen et al., Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113 (2014) 101101 [23] C. Kopper, W. Giang and N. Kurahashi for the IceCube collaboration, Observation of Astrophysical Neutrinos in Four Years of IceCube Data, in IceCube collaboration, M.G. Aartsen et al., The IceCube Neutrino Observatory | Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Di_use Neutrino Searches of All Flavors, in the proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, July 30 August 6 2015. [24] IceCube collaboration, M.G. Aartsen et al., Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube, Phys. Rev. Lett. 115 (2015) 081102 [25] IceCube collaboration, M.G. Aartsen et al., Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data, Astrophys. J. 796 (2014) 109 [26] IceCube, Pierre Auger and Telescope Array collaborations, A. Christov et al., Towards a Joint Analysis of Data from the IceCube Neutrino Telescope, the Pierre Auger Observatory and Telescope Array, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12-15 2014, to appear in J. Phys. Soc. Conf. Proc. [27] IceCube collaboration, A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26 (2006) 155 [28] IceCube collaboration, R. Abbasi et al., Calibration and Characterization of the IceCube Photomultiplier Tube, Nucl. Instrum. Meth. A 618 (2010) 139 [29] IceCube collaboration, R. Abbasi et al., The IceCube Data Acquisition System: Signal Capture, Digitization and Timestamping, Nucl. Instrum. Meth. A 601 (2009) 294 [30] Astrophysical muon neutrino ux in the northern sky with 2 years of IceCube data (released 20 Aug 2015), https://icecube.wisc.edu/science/data/HE NuMu di_use. [31] IceCube collaboration, M.G. Aartsen et al., Search for Time-independent Neutrino Emission from Astrophysical Sources with 3 yr of IceCube Data, Astrophys. J. 779 (2013) 132 [32] IceCube collaboration, R. Abbasi et al., Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector, Astrophys. J. 732 (2011) 18 [33] C. Bonifazi for the Pierre Auger collaboration, The angular resolution of the Pierre Auger Observatory, Nucl. Phys. Proc. Suppl. 190 (2009) 20 [34] M. Ave for the Pierre Auger collaboration, Reconstruction accuracy of the surface detector array of the Pierre Auger Observatory, in the proceedings of the 30th International Cosmic Ray Conference (ICRC 2007), Merida, Yucatan, Mexico, July 3-11 2007 [35] Pierre Auger collaboration, A. Aab et al., Reconstruction of inclined air showers detected with the Pierre Auger Observatory, JCAP 08 (2014) 019 [36] V. Verzi for the Pierre Auger collaboration, The Energy Scale of the Pierre Auger Observatory, in Pierre Auger collaboration, A. Aab et al., The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013), in the proceedings of the 33rd International Cosmic Ray Conference (ICRC 2013), Rio de Janeiro, Brazil, July 2-9 2013. [37] R. Pesce for the Pierre Auger collaboration, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory: an update, in Pierre Auger collaboration, P. Abreu et al., The Pierre Auger Observatory I: The Cosmic Ray Energy Spectrum and Related Measurements, in the proceedings of the 32nd International Cosmic Ray Conference (ICRC 2011), Beijing, China, August 11-18 2011. [38] Pierre Auger collaboration, J. Abraham et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 613 (2010) 29 [39] Telescope Array collaboration, R.U. Abbasi et al., Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment, Astrophys. J. 790 (2014) L21 [40] Telescope Array and Pierre Auger collaborations, I. Maris, High Energy Spectrum Working Group Report: The energy spectrum of ultra high energy cosmic rays, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12-15 2014, to appear in J. Phys. Soc. Conf. Proc. [41] P.P. Kronberg, Extragalactic magnetic _elds, Rept. Prog. Phys. 57 (1994) 325 [42] R. Durrer and A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and Observation, Astron. Astrophys. Rev. 21 (2013) 62 [43] M.S. Pshirkov, P.G. Tinyakov and F.R. Urban, New limits on extragalactic magnetic _elds from rotation measures [44] M.S. Pshirkov, P.G. Tinyakov, P.P. Kronberg and K.J. Newton-McGee, Deriving global structure of the Galactic Magnetic Field from Faraday Rotation Measures of extragalactic sources, Astrophys. J. 738 (2011) 192 [45] R. Jansson and G.R. Farrar, A New Model of the Galactic Magnetic Field, Astrophys. J. 757 (2012) 14 [46] P.G. Tinyakov and I.I. Tkachev, Deections of cosmic rays in a random component of the Galactic magnetic _eld, Astropart. Phys. 24 (2005) 32 [47] Pierre Auger collaboration, P. Abreu et al., Measurement of the Cosmic Ray Energy Spectrum Using Hybrid Events of the Pierre Auger Observatory, Eur. Phys. J. Plus 127 (2012) 87 [48] Telescope Array collaboration, D. Ivanov, High Energy Spectrum Measured by the Telescope Array Experiment, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12{15 2014, to appear in J. Phys. Soc. Conf. Proc. [49] S.S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, Ann. Math. Statist. 9 (1938) 60 [50] J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle and T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29 (2008) 299
dspace.entity.typePublication
relation.isAuthorOfPublicatione6fd6d50-2946-45a9-a515-273dddff2091
relation.isAuthorOfPublication7c75d106-b698-42ee-bfea-fe4a2b11b7f8
relation.isAuthorOfPublication32033072-414c-4448-b44b-98a6bd3e9321
relation.isAuthorOfPublication.latestForDiscoverye6fd6d50-2946-45a9-a515-273dddff2091

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arqueros54preprint.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format

Collections