A linguistic multi-criteria decision making methodology for the evaluation of tourist services considering customer opinion value

dc.contributor.authorBueno García, Itzcoatl
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorPorcel, Carlos
dc.contributor.authorKou, Gang
dc.contributor.authorHerrera-Viedma, Enrique
dc.date.accessioned2025-01-16T09:25:16Z
dc.date.available2025-01-16T09:25:16Z
dc.date.issued2020-12-28
dc.description.abstractAs a consequence of the exponential growth in online data, tourism sector has experimented a radical transformation. From this large amount of information, opinion makers can be benefited for decision making in their purchase process. However, it can also harm them according to the information they consult. In fact, being benefited or harmed by the information translates into greater or lesser satisfaction after the purchase. This will largely depend on the published opinions that they take into account, which in turn depend on the value of the opinioner who publishes said information. In this paper, the authors propose a methodology that integrates multiple decision-making techniques and with which it is intended to obtain a ranking of hotels through the opinions of their past clients. To do this, the customer value is obtained using the Recency, Frequency, Helpfulness model. The information about the users found in the social networks is managed and aggregated using the fuzzy linguistic approach 2-tuples multi-granular. In addition, we have verified the functionality of this methodology by presenting a business case by applying it on TripAdvisor data
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipNational Social Science Foundation of China
dc.description.sponsorshipState key R & D Program of China
dc.description.sponsorshipNational Natural Science Foundation of China
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipNational Office for Philosophy and Social Sciences (China)
dc.description.statuspub
dc.identifier.citationBueno, I. et al. (2021) «A linguistic multi-criteria decision making methodology for the evaluation of tourist services considering customer opinion value», Applied Soft Computing, 101. Disponible en: https://doi.org/10.1016/J.ASOC.2020.107045.
dc.identifier.doi10.1016/J.ASOC.2020.107045
dc.identifier.essn1872-9681
dc.identifier.issn1568-4946
dc.identifier.officialurlhttps://doi.org/10.1016/j.asoc.2020.107045
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S1568494620309832?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114625
dc.journal.titleApplied Soft Computing
dc.language.isoeng
dc.page.final18
dc.page.initial1
dc.publisherElsevier
dc.relation.projectID2020YFC0832702
dc.relation.projectID71725001
dc.relation.projectID71910107002
dc.relation.projectIDPID2019-103880RB-I00/AEI/10.13039/501100011033
dc.relation.projectIDTIN2016-75850-R
dc.relation.projectID19ZDA092
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu519.2
dc.subject.cdu519.816
dc.subject.cdu338.48
dc.subject.cdu658.818
dc.subject.keywordFuzzy linguistic modeling
dc.subject.keywordCustomer opinion value
dc.subject.keywordMulti-criteria decision-making
dc.subject.keywordEvaluation of tourist services
dc.subject.ucmEstadística
dc.subject.ucmTurismo
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.ucmMarketing
dc.subject.unesco5312.90 Economía Sectorial: Turismo
dc.subject.unesco1209 Estadística
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1209.04 Teoría y Proceso de decisión
dc.subject.unesco5311.05 Marketing (Comercialización)
dc.titleA linguistic multi-criteria decision making methodology for the evaluation of tourist services considering customer opinion value
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number101 (2021)
dspace.entity.typePublication
relation.isAuthorOfPublication25aa3e94-be75-4c29-a45b-52918a67e41e
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscovery25aa3e94-be75-4c29-a45b-52918a67e41e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-10-2021-ASOC-oficial.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

Collections