Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Reinforcement Learning-Based Joint Reliability and Performance Optimization for Hybrid-Cache Computing Servers

dc.contributor.authorHuang, Darong
dc.contributor.authorPahlevan, Ali
dc.contributor.authorCostero Valero, Luis María
dc.contributor.authorZapater, Marina
dc.contributor.authorAtienza Alonso, David
dc.date.accessioned2024-01-30T12:29:21Z
dc.date.available2024-01-30T12:29:21Z
dc.date.issued2022-03-11
dc.description.abstractComputing servers play a key role in the development and process of emerging compute-intensive applications in recent years. However, they need to operate efficiently from an energy perspective viewpoint, while maximizing the performance and lifetime of the hottest server components (i.e., cores and cache). Previous methods focused on either improving energy efficiency by adopting new hybrid-cache architectures including the resistive random-access memory (RRAM) and static random-access memory (SRAM) at the hardware level, or exploring tradeoffs between lifetime limitation and performance of multicore processors under stable workloads conditions. Therefore, no work has so far proposed a co-optimization method with hybrid-cache-based server architectures for real-life dynamic scenarios taking into account scalability, performance, lifetime reliability, and energy efficiency at the same time. In this article, we first formulate a reliability model for the hybrid-cache architecture to enable precise lifetime reliability management and energy efficiency optimization. We also include the performance and energy overheads of cache switching, and optimize the benefits of hybrid-cache usage for better energy efficiency and performance. Then, we propose a runtime Q-learning-based reliability management and performance optimization approach for multicore microprocessors with the hybrid-cache architecture, jointly incorporated with a dynamic preemptive priority queue management method to improve the overall tasks’ performance by targeting to respect their end time limits. Experimental results show that our proposed method achieves up to 44% average performance (i.e., tasks execution time) improvement, while maintaining the whole system design lifetime longer than five years, when compared to the latest state-of-the-art energy efficiency optimization and reliability management methods for computing servers.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1109/TCAD.2022.3158832
dc.identifier.issn1937-4151
dc.identifier.urihttps://hdl.handle.net/20.500.14352/96484
dc.issue.number12
dc.journal.titleIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
dc.language.isoeng
dc.page.final5609
dc.page.initial5596
dc.publisherIEEE
dc.rightsAttribution-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleReinforcement Learning-Based Joint Reliability and Performance Optimization for Hybrid-Cache Computing Servers
dc.typejournal article
dc.volume.number41
dspace.entity.typePublication
relation.isAuthorOfPublicationb2616c88-d3da-43df-86cb-3ced1084f460
relation.isAuthorOfPublicationcbef6c8a-04b5-428f-b092-c8399eb856a4
relation.isAuthorOfPublication.latestForDiscoveryb2616c88-d3da-43df-86cb-3ced1084f460

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zapater_2022_reinforcement-learning-based.pdf
Size:
7.69 MB
Format:
Adobe Portable Document Format

Collections