Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spectral Fuzzy Classification: A Supervised Approach

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

European Society for Fuzzy Logic and Technology
Citations
Google Scholar

Citation

Abstract

The goal of this paper is to present an algorithm for pattern recognition,leveraging on an existing fuzzy clustering algorithm developed by Del Amo et al. [3, 5], and modifying it to its supervised version, in order to apply the algorithm to different pattern recognition applications in Remote Sensing.The main goal is to recognize the object and stop the search depending on the precision of the application. The referred algorithm was the core of a classification system based on Fuzzy Sets Theory (see [14]), approaching remotely sensed classification problems as multicriteria decision making problems, solved by means of an outranking methodology (see [12] and also [11]). The referred algorithm was a unsupervised classification algorithm, but now in this paper will present a modification of the original algorithm into a supervised version.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections