Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Geometrical and Topological Properties of Bumps and Starlike Bodies in Banach Spaces

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorJiménez Sevilla, María Del Mar
dc.date.accessioned2023-06-20T16:48:57Z
dc.date.available2023-06-20T16:48:57Z
dc.date.issued2002
dc.description.abstractWhile the topological and geometrical properties of convex bodies in Banach spaces are quite well understood (including their topological and smooth classification), much less is known about the structure of starlike bodies. Starlike bodies are important objects in nonlinear functional analysis as they appear as level sets of $n$-homogeneous polynomials on Banach spaces. Significant progress in the study of starlike bodies has been done in the last years by the efforts of Manuel Cepedello, Robert Deville, Tadeusz Dobrowolski, Marian Fabian and of the authors of the present survey. Its aim is to present these results in a coherent way, emphasizing the connections between infinite-dimensional topology and nonlinear functional analysis (such as the failure of Rolle's and Brouwer's theorems in infinite dimensions), and leading to new characterizations of smoothness properties of Banach spaces. One of the leading ideas of the paper is the use of bump functions as an instrument to study the properties of starlike bodies.\par The paper is divided into eight sections, their headings reflecting the contents and the organization of the paper: 1. Introduction; 2. Classifying starlike bodies; 3. Smooth Lipschitz contractibility of boundaries of starlike bodies in infinite dimensions; 4. The failure of Rolle's and Brouwer's theorems in infinite dimensions; 5. How small can the range of a derivative be? 6. How large does the range of a derivative look like? 8. Geometrical properties of starlike bodies. The failure of James' theorem for starlike bodies.\par Not all the proofs are given in full detail, the authors' emphasis being rather on the ideas lying behind them and on the connections between various properties and notions, avoiding cumbersome details. This survey is a valuable addition to the existing literature and can be used as a guide to this very active area of investigation in nonlinear functional analysis and infinite-dimensional topology.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13948
dc.identifier.issn0213-8743
dc.identifier.officialurlhttp://www1.unex.es/eweb/extracta/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57113
dc.issue.number2
dc.journal.titleExtracta Mathematicae
dc.language.isoeng
dc.page.final200
dc.page.initial151
dc.publisherUniversidad de Extremadura, Departamento de Matemáticas
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordSmooth bump functions
dc.subject.keywordStarlike bodies
dc.subject.keywordConvex bodies
dc.subject.keywordInfinite-dimensional tosology
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleGeometrical and Topological Properties of Bumps and Starlike Bodies in Banach Spaces
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication36c2a4e7-ac6d-450d-b64c-692a94ff6361
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2002geometrical.pdf
Size:
483.23 KB
Format:
Adobe Portable Document Format

Collections