Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unitarity, analyticity, dispersion relations, and resonances in strongly interacting W_LW_L, Z_L Z_L, and hh scattering

dc.contributor.authorDelgado López, Rafael
dc.contributor.authorDobado González, Antonio
dc.contributor.authorLlanes Estrada, Felipe José
dc.date.accessioned2023-06-18T06:45:21Z
dc.date.available2023-06-18T06:45:21Z
dc.date.issued2015-04-27
dc.description© 2015 American Physical Society. The authors thank D. Espriu, M. J. Herrero, J. R. Pelaez, and J. J. Sanz-Cillero for useful conversations. A. D. thanks the CERN TH-Unit for its hospitality during the time some important parts of this work were done. R. L. D. thanks the NEXT institute and the high-energy group at the University of Southampton for their hospitality. The work has been supported by Spanish Grants No. UCM:910309 and No. MINECO:FPA2011-27853-C02-01 and by Grant No. MINECO:BES-2012-056054 (R. L. D.).
dc.description.abstractIf the electroweak symmetry breaking sector turns out to be strongly interacting, the actively investigated effective theory for longitudinal gauge bosons plus Higgs can be efficiently extended to cover the regime of saturation of unitarity (where the perturbative expansion breaks down). This is achieved by dispersion relations, whose subtraction constants and left cut contribution can be approximately obtained in different ways, giving rise to different unitarization procedures. We illustrate the ideas with the inverse amplitude method, one version of the N/D method, and another improved version of the K matrix. In the three cases we get partial waves which are unitary, analytical with the proper left and right cuts, and in some cases poles in the second Riemann sheet that can be understood as dynamically generated resonances. In addition, they reproduce at next to leading order the perturbative expansion for the five partial waves not vanishing (up to J = 2), and they are renormalization scale (μ) independent. Also the unitarization formalisms are extended to the coupled channel case. Then we apply the results to the elastic scattering amplitude for the longitudinal components of the gauge bosons V = W, Z at high energy. We also compute hh -> hh and the inelastic process VV -> hh which are coupled to the elastic VV channel for custodial isospin I = 0. We numerically compare the three methods for various values of the low-energy couplings and explain the reasons for the differences found in the I = J = 1 partial wave. Then we study the resonances appearing in the different elastic and coupled channels in terms of the effective Lagrangian parameters.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipUniveresidad Complutense de Madrid (UCM)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30802
dc.identifier.doi10.1103/PhysRevD.91.075017
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.91.075017
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24041
dc.issue.number7
dc.journal.titlePhysical review D
dc.language.isoeng
dc.page.final075017/36
dc.page.initial075017/1
dc.publisherAmer Physical Soc
dc.relation.projectIDUCM:910309
dc.relation.projectIDFPA2011-27853-C02-01
dc.relation.projectIDBES-2012-056054
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordChiral perturbation-theory
dc.subject.keywordSymmetry-breaking sector
dc.subject.keywordComposite higgs-model
dc.subject.keywordEquivalence theorem
dc.subject.keywordWeak-interactions
dc.subject.keywordStandard model
dc.subject.keywordElectroweak parameters
dc.subject.keywordTechnicolor theories
dc.subject.keywordVacuum misalignment
dc.subject.keywordScalar resonance
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleUnitarity, analyticity, dispersion relations, and resonances in strongly interacting W_LW_L, Z_L Z_L, and hh scattering
dc.typejournal article
dc.volume.number91
dcterms.references[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). [2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). [3] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 704, 123 (2011); G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 712, 22 (2012); 722, 305 (2013). [4] D. B. Kaplan and H. Georgi, Phys. Lett. 136B, 183 (1984); S. Dimopoulos and J. Preskill, Nucl. Phys. B199, 206 (1982); T. Banks, Nucl. Phys. B243, 125 (1984); D.B. Kaplan, H. Georgi, and S. Dimopoulos, Phys. Lett. 136B, 187 (1984); H. Georgi, D. B. Kaplan, and P. Galison, Phys. Lett. 143B, 152 (1984); H. Georgi and D. B. Kaplan, Phys. Lett. 145B, 216 (1984); M. J. Dugan, H. Georgi, and D. B. Kaplan, Nucl. Phys. B254, 299 (1985); G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, J. High Energy Phys. 06 (2007) 045. [5] C. Englert, P. Harris, M. Spannowsky, and M. Takeuchi, arXiv:1503.07459. [6] D. Espriu, F. Mescia, and B. Yencho, Phys. Rev. D 88, 055002 (2013); D. Espriu and B. Yencho, Phys. Rev. D 87, 055017 (2013); D. Espriu and F. Mescia, Phys. Rev. D 90, 015035 (2014). [7] A. Azatov, R. Contino, and J. Galloway, J. High Energy Phys. 04 (2012) 127; 04 (2013) 140(E). [8] G. Weiglein et al. (LHC/LC Study Group Collaboration), Phys. Rep. 426, 47 (2006); T. Han, H. E. Logan, B. McElrath, and L. T. Wang, Phys. Rev. D 67, 095004 (2003); J. Bagger, V. D. Barger, K. m. Cheung, J. F. Gunion, T. Han, G. A. Ladinsky, R. Rosenfeld, and C.-P. Yuan, Phys. Rev. D 52, 3878 (1995). [9] I. Brivio, T. Corbett, O. J. P. Éboli, M. B. Gavela, J. González-Fraile, M. C. González-García, L. Merlo, and S. Rigolin, J. High Energy Phys. 03 (2014) 24. [10] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin, and J. Yepes Phys. Lett. B 722, 330 (2013). [11] A. Pich, I. Rosell, and J. J. Sanz-Cillero, EPJ Web Conf. 60, 19009 (2013). [12] E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy Phys. 10 (2013) 087. [13] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock, and C. Zhang, Ann. Phys. (Amsterdam) 335, 21 (2013). [14] G. Buchalla, O. Cata, and C. Krause, Nucl. Phys. B880, 552 (2014). [15] G. Buchalla and O. Cata, J. High Energy Phys. 07 (2012) 101. [16] T. Appelquist and C. Bernard, Phys. Rev. D 22, 200 (1980); A. Longhitano, Phys. Rev. D 22, 1166 (1980); Nucl. Phys. B188, 118 (1981); A. Dobado, D. Espriu, and M. J. Herrero, Phys. Lett. B 255, 405 (1991); B. Holdom and J. Terning, Phys. Lett. B 247, 88 (1990); A. Dobado, D. Espriu, and M. J. Herrero, Phys. Lett. B 255, 405 (1991);M. Golden and L. Randall, Nucl. Phys. B361, 3 (1991); R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin, and J. Yepes, Phys. Lett. B 722, 330 (2013); 726, 926(E) (2013). [17] S. Weinberg, Physica (Amsterdam) 96A, 327 (1979); J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984); Nucl. Phys. B250, 465 (1985); B250, 517 (1985). [18] R. L. Delgado, A. Dobado, and F. J. Llanes-Estrada, J. Phys. G 41, 025002 (2014). [19] R. L. Delgado, A. Dobado, and F. J. Llanes-Estrada, J. High Energy Phys. 02 (2014) 121. [20] J.M. Cornwall, D. N. Levin, and G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974); C. E. Vayonakis, Lett. Nuovo Cimento 17, 383 (1976); B.W. Lee, C. Quigg, and H. Thacker, Phys. Rev. D 16, 1519 (1977); M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. 261, 379 (1985); M.S. Chanowitz, M. Golden, and H. Georgi, Phys. Rev. D 36, 1490 (1987); A. Dobado and J. R. Peláez, Nucl. Phys. B425, 110 (1994); Phys. Lett. B 329, 469 (1994); 335, 554 (1994); D. Espriu and J. Matias, Phys. Rev. D 52, 6530 (1995). [21] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990); 235, 129 (1990). [22] A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); 56, 3057 (1997). [23] G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); B.W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. D 16, 1519 (1977); K. i. Hikasa and K. Igi, Phys. Lett. B 261, 285 (1991); 270, 128(E) (1991); D. A. Dicus and V. L. Teplitz, Phys. Rev. D 49, 5735 (1994); J. A. Oller, Phys. Lett. B 477, 187 (2000). [24] W. Heitler, Math. Proc. Cambridge Philos. Soc. 37, 291 (1941); J. S. Schwinger, Phys. Rev. 74, 1439 (1948); S.N. Gupta, Quantum Electrodynamics (Gordon and Breach, New York, 1981). [25] A. Dicus and W.W. Repko, Phys. Rev. D 42, 3660 (1990). [26] W. Kilian et al., arXiv:1408.6207. [27] A. Dobado and J. R. Peláez, Phys. Rev. D 65, 077502 (2002). [28] G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion, and S. Kraml, Phys. Rev. D 88, 075008 (2013); T. Corbett et al., Phys. Rev. D 86, 075013 (2012); arXiv:1306.0006; J. Ellis and T. You, J. High Energy Phys. 06 (2013) 103; P. Paolo Giardino, K. Kannike, I. Masina, M. Raidal, and A. Strumia, J. High Energy Phys. 05 (2014) 046; A. Falkowski, F. Riva, and A. Urbano, J. High Energy Phys. 11 (2013) 11. [29] R. Contino, D. Marzocca, D. Pappadopulo, and R. Rattazzi, J. High Energy Phys. 10 (2011) 081. [30] M. B. Gavela, K. Kanshin, P. A. N. Machado, and S. Saa, J. High Energy Phys. 03 (2015) 043. [31] S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Proceedings of the 8th Nobel Symposium, edited by N. Svartholm (Almqvist y Wiksells, Stockholm, 1968), p. 367. [32] E. Halyo, Mod. Phys. Lett. A 08, 275 (1993); W.D. Goldberger, B. Grinstein, and W. Skiba, Phys. Rev. Lett. 100, 111802 (2008). [33] K. Agashe, R. Contino, and A. Pomarol, Nucl. Phys. B719, 165 (2005); R. Contino, L. Da Rold, and A. Pomarol, Phys. Rev. D 75, 055014 (2007); D. Barducci, A. Belyaev, M. S. Brown, S. De Curtis, S. Moretti, and G. M. Pruna, J. High Energy Phys. 09 (2013) 047. [34] V. Khachatryan, arXiv:1412.8662 [Eur. Phys. J. C (to be published)]; ATLAS Collaboration, Collaboration Report No. ATLAS-CONF-2014-009. [35] J. R. Peláez, J. A. Oller, and E. Oset, Phys. Rev. Lett. 80, 3452 (1998); A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [36] A. Dobado and M. J. Herrero, Phys. Lett. B 228, 495 (1989); 233, 505 (1989); J. Donoghue and C. Ramirez, Phys. Lett. B 234, 361 (1990). [37] A. Dobado, A. Gmez-Nicola, A. L. Maroto, and J. R. Pelez, Effective Lagrangians for the Standard Model (Springer, New York, 1997). [38] R. J. Eden, P. V. Landshoff, D. l. Olive, and J. C. Polkingorne, The Analytic S-matrix (Cambridge University Press, Cambridge, UK, 1966); A. O. Barut, The Theory of the Scattering Matrix (Macmillan, New York, 1967); K. Nishijima, Fields and Particles: Field Theory and Dispersion Relations (W. A. Benjamin Inc., New York, 1969). [39] A. Gómez Nicola, J. R. Peláez, and G. Rios, Phys. Rev. D 77, 056006 (2008). [40] J. D. Bjorken, Phys. Rev. Lett. 4, 473 (1960). [41] A. Dobado, J. Morales, J. R. Peláez, and M. T. Urdiales, Phys. Lett. B 387, 563 (1996). [42] V. Gribov (prepared by Y. L. Dokshitzer and J. Nyiri), Strong Interactions of Hadrons at High Energies (Cambridge University Press, Cambridge, UK, 2009); Y. V. Novozhilov, Introduction to Elementary Particle Theory (Pergamon Press, New York, 1975). [43] R. L. Delgado, A. Dobado, and F. J. Llanes-Estrada, arXiv:1408.1193. [44] J. F. Donoghue, C. Ramirez, and G. Valencia, Phys. Rev. D 39, 1947 (1989). [45] T. N. Pham and T. N. Truong, Phys. Rev. D 31, 3027 (1985). [46] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B321, 311 (1989). [47] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255 (1966). [48] Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966). [49] A. Dobado, M. J. Herrero, and J. Terrón, Z. Phys. C 50, 205 (1991); 50, 465 (1991); A. Dobado, M. J. Herrero, J. R. Peláez, and E. Ruiz Morales, Phys. Rev. D 62, 055011 (2000); J.M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D 65, 096014 (2002). [50] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014). [51] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). [52] J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga, Comput. Phys. Commun. 184, 1453 (2013). [53] Z. Xiao and H. Zheng, Commun. Theor. Phys. 48, 685 (2007).
dspace.entity.typePublication
relation.isAuthorOfPublication16523fad-99a9-422c-9a8e-c949ccffadec
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublication.latestForDiscovery16523fad-99a9-422c-9a8e-c949ccffadec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DobadoAntonio114libre.pdf
Size:
3.37 MB
Format:
Adobe Portable Document Format

Collections