Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
For a certain class of isolated quantum systems, we report the existence of irreversible processes in which the energy is not dissipated. After a closed cycle in which the initial energy distribution is fully recovered, the expectation value of a symmetry-breaking observable changes from a value differing from zero in the initial state to zero in the final state. This entails the unavoidable loss of a certain amount of information and constitutes a source of irreversibility. We show that the von Neumann entropy of time-averaged equilibrium states increases in the same magnitude as a consequence of the process. We support this result by means of numerical calculations in an experimentally feasible system, the Lipkin-Meshkov-Glick model.
© 2015 American Physical Society. We thank O. Marty for useful discussions. The work was supported by a grant by the Spanish Government for research Project No. FIS2012-35316, an Alexander von Humboldt Professorship, the EU Integrating Project SIQS, and the EU STREP project EQUAM. Part of the calculations of this work were performed in the high-capacity cluster for physics, funded in part by Universidad Complutense de Madrid and in part with Feder funding. This is a contribution to the Campus of International Excellence of Moncloa, CEI Moncloa.
UCM subjects
Unesco subjects
[1] C. Jarzynski, Annu. Rev. Cond. Matter Phys. 2, 329 (2011); M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771 (2011). [2] P. Talkner, P. Hänggi, and M. Morillo, Phys. Rev. E 77, 051131 (2008). [3] L. Szilard, Z. Phys. A 53, 840 (1929). [4] R. Landauer, IBM J. Res. Dev. 5, 183 (1961). [5] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 (2010). [6] J. M. Horowitz and H. Sandberg, New. J. Phys. 16, 125007 (2014). [7] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011). [8] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007). [9] R. Puebla, A. Relaño, and J. Retamosa, Phys. Rev. A 87, 023819 (2013). [10] R. Puebla and A. Relaño, Europhys. Lett. 104, 50007 (2013). [11] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Phys. Rev. Lett. 105, 204101 (2010). [12] C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler, Nature (London) 464, 1165 (2010). [13] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965). [14] J. Vidal, G. Palacios, and R. Mosseri, Phys. Rev. A 69, 022107 (2004); S. Dusuel and J. Vidal, Phys. Rev. Lett. 93, 237204 (2004); P. Ribeiro, J. Vidal, and R. Mosseri, ibid. 99, 050402 (2007); ,Phys. Rev. E 78, 021106 (2008). [15] A. Relaño, J. M. Arias, J. Dukelsky, J. E. García Ramos, and P. Pérez Fernández, Phys. Rev. A 78, 060102(R) (2008); P. Pérez Fernández, A. Relaño, J. M. Arias, J. Dukelsky, and J. E. García Ramos, ibid. 80, 032111 (2009). [16] T. Caneva, R. Fazio, and G. E. Santoro, Phys. Rev. B 78, 104426 (2008). [17] A. Polkovnikov, Phys. Rev. Lett. 101, 220402 (2008). [18] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998); ,Phys. Rev. E 60, 2721 (1999). [19] P. Reimann and M. Kastner, New. J. Phys. 14, 043020 (2012). [20] A. J. Roncaglia, F. Cerisola, and J. P. Paz, Phys. Rev. Lett. 113, 250601 (2014). [21] A. Polkovnikov, Ann. Phys. (NY) 326, 486 (2011). [22] M. Srednicki, Phys. Rev. E 50, 888 (1994). [23] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). [24] K. Muruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).