What do machines think about?

dc.conference.date30 Jun. - 2 Jul- 2021
dc.conference.placeLogroño
dc.conference.titleInternational Conference on the Ethical and Social Impact of ICT
dc.contributor.authorMarín Díaz, Gabriel
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorGómez González, Daniel
dc.contributor.editorArias Oliva, Mario
dc.contributor.editorPelegrín Borondo, Jorge
dc.contributor.editorMurata, Kiyoshi
dc.contributor.editorReinares Lara, Eva Marina
dc.date.accessioned2026-01-16T12:24:22Z
dc.date.available2026-01-16T12:24:22Z
dc.date.issued2021-07-01
dc.description.abstractCan machines think? This question was posed by Alan M. Turing (1950) in the mid-20th century. The answer to that question is the proposal of the so-called Turing test. In this test, Artificial Intelligence (AI) is considered to be a way of acting that imitates the intelligent behavior of human beings. Since then the AI has been surpassing the human being in tasks for which it was supposed to have intelligence: strategy games like chess, driving vehicles, composing symphonies, automatic planning, and a long etcetera that seems to have no end. In fact, the changes produced in the last decades in the telecommunications sector, accompanied by the development of the storage and processing capacity of information have meant a change of paradigm to which the name Industry 4.0 has been given. AI corresponds to a field of knowledge that includes Machine Learning (ML) and Deep Learning (DL). In both fields, to solve a problem proceeds to the training of models to learn the problem in question from existing data. Once the rules are obtained, we can apply them to new data sets to produce the appropriate answers by applying the rules learned from experience. To perform ML processes at least three fundamental parts are necessary: input data, the expected results and the measurement of the algorithm's performance so that the algorithm's work can be adjusted by means of feedback processes.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipSIN FINANCIACIÓN
dc.description.statuspub
dc.identifier.citationMarín Díaz, G., Carrasco González, R. A., & Gómez González, D. (2021). What do machines think about? [New] Normal Technology Ethics: Proceedings of the ETHICOMP 2021 (pp. 129–133). Universidad de La Rioja.
dc.identifier.isbn978-84-09-28671-3
dc.identifier.officialurlhttps://dialnet.unirioja.es/servlet/articulo?codigo=7977270
dc.identifier.relatedurlhttps://dialnet.unirioja.es/servlet/libro?codigo=824595
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130456
dc.language.isoeng
dc.page.final133
dc.page.initial129
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.cdu17
dc.subject.cdu007.5
dc.subject.cdu519.237
dc.subject.keywordMachine Learning
dc.subject.keywordInterpretability
dc.subject.keywordDeep Learning
dc.subject.keywordBias
dc.subject.keywordArtificial Intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmInteligencia artificial (Filosofía)
dc.subject.ucmÉtica
dc.subject.ucmTecnología de la información (Ciencias de la Información)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco7205.02 Filosofía de la Lógica
dc.subject.unesco6305.03 Análisis Estadístico
dc.titleWhat do machines think about?
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationdbf934cd-7a5b-4052-a128-5c68bf7d8b7e
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication.latestForDiscoverydbf934cd-7a5b-4052-a128-5c68bf7d8b7e
relation.isEditorOfPublication5cda89bb-8c5c-415b-a9fb-d024ad4d39d6
relation.isEditorOfPublication.latestForDiscovery5cda89bb-8c5c-415b-a9fb-d024ad4d39d6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
What do machines.pdf
Size:
52.48 KB
Format:
Adobe Portable Document Format