Gold-nanosphere formation using food sample endogenous polyphenols for in-vitro assessment of antioxidant capacity
Loading...
Official URL
Full text at PDC
Publication date
2012
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Citation
Abstract
In this work it was demonstrated that sample endogenous polyphenols are selectively driving the gold-nanoparticle (AuNPs)-formation process when representative food samples were used as natural sources of reducing compounds. The process of AuNPs formation was characterized by UV–visible spectroscopy and was described by a sigmoidal curve (R 2 ≥ 0.990) which gave information about the polyphenol concentration at which the localized surface plasmon resonance (LSPR) absorption reached its half-value, X50c, and about AuNPs production per polyphenol concentration unit, K AuNPs. The behavior of phenolic acids was different, with lower X 50c and higher K AuNPs values than flavonoids. For the food samples tea, apple, pear, wine, and honey X50c values were 0.22, 7.3, 11.5, 20.4, 30.3, and 53.5 (mg mL−1) and K AuNPs values were 28.7, 0.70, 0.60, 0.20, 0.14, and 0.10 (mg−1 mL), respectively. Excellent correlation between K AuNPs and total phenolics (TP) was obtained (r = 0.98, p-value < 0.05), implying K AuNPs is a novel marker for evaluation of food sample antioxidant capacity in vitro. The K AuNPs values of samples indicated their antioxidant capacity was in the order: tea > apple > pear > wine > honey. The reproducibility of the AuNPs formation approach was excellent, not only for polyphenol standards (RSD < 6 % for X50c and RSD < 11 % for K AuNPs) but also for food samples (RSD < 9 % for X50c and RSD < 15 % for K AuNPs). Transmission electronic microscopy (TEM) enabled confirmation of the formation of stabilized Au-nanospheres from endogenous polyphenols with very well-defined sizes under 20 nm diameter for all the food samples investigated.