The effect of zonal tides on the dynamical ellipticity of the Earth and its influence on the nutation

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper, the expressions of variations of the dynamical ellipticity and the principal moments of inertia due to the deformations produced by the zonal part of the tidal potential are obtained. Starting from these expressions, we have studied from equations related to Hamiltonian theory, their effects on the nutation and finally we have evaluated numerically such influences, with a level of truncation at 0.1 mu as. Thus we have shown that some coefficients are quite large with respect to the usual accuracy of up-to-date observations.
Bretagnon, P., Rocher, P., and Simon, J. L.: 1997, ‘Theory of the Rotation of the Rigid Earth’, Astron. Astrophys. 319, 305–317. Dehant V.: 1990, Geophys. J. Int. 100, 477–483. Dehant, V., Capitaine, N., and Defraigne, P.: 1997, ‘Comparison between Values of the Dynamical Flattening of the Earth Derived From Various Kinds of Observations (Precession, J2, Seismology)’,in N. Capitaine (ed.), Proc. Journées Systèmes de Référence Spatio-Temporels 1996, Paris,France. Dehant, V., Arias, F., Brzezinski, A., Buffett, B., Capitaine, N., Carter, W., Defraigne, P., Dickey, J., Eubanks, M., Feissel, M., Fliegel, H., Fukushima, T., Forte, A., Gross, R., Hartmann, T., Herring, T., Kinoshita, H., Mathews, P. M., McCarthy, D., Melbourne, J.,Molodensky, S., Roosbeek, F.,Salstein, D., Sasao, T., Soffel, M., Souchay, J., Vondrak, J., Wahr, J., Williams, J., Yatskiv, Y.,and Zhu, S. Y.: 1999, ‘Considerations for the Future of Non-Rigid Earth Nutation Theory’, to be summitted. Deprit, A.: 1969, ‘Canonical Transformations Depending On a Small Parameter’, Celest. Mech. 1,12–30. Hori, G.: 1966, ‘Theory of General Perturbations with Unspecified Canonical Variables’, Publ. Astr.Soc. Japan. 8(4), 287–296. Kinoshita, H.: 1977, ‘Theory of the Rotation of the Rigid Earth’, Celest. Mech. 15, 277–326. Kinoshita, H. and Souchay, J.: 1990, ‘The Theory of the Nutation for the Rigid Earth Model at the Second Order’, Celest. Mech. 48, 187–265. Kinoshita, H., Hori, G., and Nakai, H.: 1974, ‘Modified Jacobi Polynomials and its Applications to Expansions of Disturbing Functions’, Annals of the Tokyo Astronomical Observatory. Second Series XIV(1). Mathews, P. M., Buffett, B. A., and Shapiro, I. I.: 1995, ‘Love Numbers for a Rotating Spheroidal Earth: New Definitions and Numerical Values’, Geophys. Res. Letters 22(5), 579–582. Melchior, P.: 1978, The Tides of the Planet Earth, Pergamon Press. Rochester, M. G. and Smylie, D. E.: 1974, ‘On Changes in the Trace of the Earth’s Inertial Tensor’,J. Geophys. Res. 79(32), 4948–4951. Roosbeek, F. and Dehant, V.: 1998, ‘RDAN97: An Analytical Development of Rigid Earth Nutation Series Using Torque Approach’, Celest. Mech. 70(4), 215–253. Seidelmann, P. K.: 1982, Celest. Mech. 27, 79–106. Souchay, J.: 1998, ‘Comparisons of the Tables REN-2000 with Numerical Integration and Other Recent Analytic Tables’, A. J. 116, 503–515 Souchay, J. and Kinoshita, H.: 1996, ‘Corrections and New Developments in Rigid Earth Nutation Theory: I. Lunisolar Influence Including Indirect Planetary Effects’, Astron. Astrophys. 312,1017–1030. Souchay, J. and Kinoshita, H.: 1997, ‘Corrections and New Developments in Rigid Earth Nutation Theory: II. Influence of Second-Order Geopential and Direct Planetary Effect’, Astron.Astrophys. 318,639–652