Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Properties of polycrystalline gas sensors based on d.c. and a.c. electrical measurements

dc.contributor.authorGutiérrez Monreal, Javier
dc.contributor.authorArés Escolar, Luis
dc.contributor.authorRobla Villalba, José Ignacio
dc.contributor.authorHorrillo Guemes, María Carmen
dc.contributor.authorSayago Olmo, Isabel
dc.contributor.authorAgapito Serrano, Juan Andrés
dc.date.accessioned2023-06-20T20:19:05Z
dc.date.available2023-06-20T20:19:05Z
dc.date.issued1992
dc.descriptionCopyright © 1992 Published by Elsevier B.V. Symposium B: New Materials, Physics & Technologies for Micronic Integrated Sensors The authors will like to thank COPRECI (FAGOR S. Cop.) Mondragón (Spain) for the finantial support in this research
dc.description.abstractElectrical properties of polycrystalline gas sensors are analyzed by d.c. and a.c. measurements. d.c. electrical conductivity values compared with those obtained by admittance spectroscopy methods help to obtain a detailed 'on line' analysis of conductivity-modulated gas sensors. The electrical behaviour of grain boundaries is obtained and a new design of sensors can be achieved by enhancing the activity of surface states in the detecting operation. A Schottky barrier model is used to explain the grain boundary action under the presence of surrounding gases. The height of this barrier is a function of gas concentration due to the trapping of excess charge generated by gas adsorption at the interface. A comparison between this dependence, and a plot of the real and imaginary components of the admittance versus frequency at different gas concentrations, provides information on the different parameters that play a role in the conduction mechanisms. These methods have been applied to the design of a CO sensor based on tin oxide films for domestic purposes, the characteristics of which are presented.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40639
dc.identifier.doi10.1016/0925-4005(92)85023-P
dc.identifier.issn0925-4005
dc.identifier.officialurlhttp://dx.doi.org/10.1016/0925-4005(92)85023-P
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60074
dc.issue.number3
dc.journal.titleSensors and actuators B: Chemical
dc.language.isoeng
dc.page.final235
dc.page.initial231
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordGas sensor
dc.subject.keywordPollution
dc.subject.keywordSnO2
dc.subject.ucmElectrónica (Física)
dc.titleProperties of polycrystalline gas sensors based on d.c. and a.c. electrical measurements
dc.typejournal article
dc.volume.number8
dcterms.references[1] J.Werner. Electronic properties of grain boundaries. Polychrystalline semiconductors. Springer Verlag 1985 [2] G. Blatter & F. Greuter. Electrical properties of grain boundarics in presence of deep bulk. Polychrystalline semiconductors. Springer Verlag 1985 [3] C.H. Scager & G.E. Pike. App. Phys. letters 37 747 (1980) [4] J.W. Orton & M.J. Powell. Rep. on Progress Pbys. 43 (1980) 1263-1307. [5] S.M. Sze. Physics of semiconductor devices. 2nd ed. 1981. J. Wiley. [6] P.T. Moseley & B.C. Tofield. Solid State Gas Sensors. Adam Hilger 1987. [7] J. Agapito & J. Gutiérrez. IV Eurosensors Congress. Karlsrube 1990. Sensors & actuators. Special issue, may 1991. [8] J. Gutiérrez, J. Agapito & alt. IV Eurosensors Congress. Karlsrube 1990. Sensors & actuators. Special issue, may 1991.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Agapito-Properties-Polycrystaline.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections