Properties of polycrystalline gas sensors based on d.c. and a.c. electrical measurements
dc.contributor.author | Gutiérrez Monreal, Javier | |
dc.contributor.author | Arés Escolar, Luis | |
dc.contributor.author | Robla Villalba, José Ignacio | |
dc.contributor.author | Horrillo Guemes, María Carmen | |
dc.contributor.author | Sayago Olmo, Isabel | |
dc.contributor.author | Agapito Serrano, Juan Andrés | |
dc.date.accessioned | 2023-06-20T20:19:05Z | |
dc.date.available | 2023-06-20T20:19:05Z | |
dc.date.issued | 1992 | |
dc.description | Copyright © 1992 Published by Elsevier B.V. Symposium B: New Materials, Physics & Technologies for Micronic Integrated Sensors The authors will like to thank COPRECI (FAGOR S. Cop.) Mondragón (Spain) for the finantial support in this research | |
dc.description.abstract | Electrical properties of polycrystalline gas sensors are analyzed by d.c. and a.c. measurements. d.c. electrical conductivity values compared with those obtained by admittance spectroscopy methods help to obtain a detailed 'on line' analysis of conductivity-modulated gas sensors. The electrical behaviour of grain boundaries is obtained and a new design of sensors can be achieved by enhancing the activity of surface states in the detecting operation. A Schottky barrier model is used to explain the grain boundary action under the presence of surrounding gases. The height of this barrier is a function of gas concentration due to the trapping of excess charge generated by gas adsorption at the interface. A comparison between this dependence, and a plot of the real and imaginary components of the admittance versus frequency at different gas concentrations, provides information on the different parameters that play a role in the conduction mechanisms. These methods have been applied to the design of a CO sensor based on tin oxide films for domestic purposes, the characteristics of which are presented. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/40639 | |
dc.identifier.doi | 10.1016/0925-4005(92)85023-P | |
dc.identifier.issn | 0925-4005 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/0925-4005(92)85023-P | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60074 | |
dc.issue.number | 3 | |
dc.journal.title | Sensors and actuators B: Chemical | |
dc.language.iso | eng | |
dc.page.final | 235 | |
dc.page.initial | 231 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Gas sensor | |
dc.subject.keyword | Pollution | |
dc.subject.keyword | SnO2 | |
dc.subject.ucm | Electrónica (Física) | |
dc.title | Properties of polycrystalline gas sensors based on d.c. and a.c. electrical measurements | |
dc.type | journal article | |
dc.volume.number | 8 | |
dcterms.references | [1] J.Werner. Electronic properties of grain boundaries. Polychrystalline semiconductors. Springer Verlag 1985 [2] G. Blatter & F. Greuter. Electrical properties of grain boundarics in presence of deep bulk. Polychrystalline semiconductors. Springer Verlag 1985 [3] C.H. Scager & G.E. Pike. App. Phys. letters 37 747 (1980) [4] J.W. Orton & M.J. Powell. Rep. on Progress Pbys. 43 (1980) 1263-1307. [5] S.M. Sze. Physics of semiconductor devices. 2nd ed. 1981. J. Wiley. [6] P.T. Moseley & B.C. Tofield. Solid State Gas Sensors. Adam Hilger 1987. [7] J. Agapito & J. Gutiérrez. IV Eurosensors Congress. Karlsrube 1990. Sensors & actuators. Special issue, may 1991. [8] J. Gutiérrez, J. Agapito & alt. IV Eurosensors Congress. Karlsrube 1990. Sensors & actuators. Special issue, may 1991. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Agapito-Properties-Polycrystaline.pdf
- Size:
- 1.07 MB
- Format:
- Adobe Portable Document Format