Pseudo-periodic homeomorphisms and degeneration of Riemann surfaces
Loading...
Download
Full text at PDC
Publication date
1994
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society
Citation
Abstract
The authors classify all topological types of degenerate central fibers appearing in holomorphic families of closed Riemann surfaces of genus g≥2 over the unit disc.
A degenerating family of genus g is a triple (M,D,φ) consisting of a 2-dimensional complex manifold M, an open unit disk D in the complex plane, and a surjective proper holomorphic map φ such that all fibers of φ are connected and φ|φ−1(D∗): φ−1(D∗)→D∗ is a smooth fiber bundle with fiber Σg, where Σg is an oriented closed surface of genus g and D∗=D−{0}. The monodromy homeomorphism f: Σg→Σg of (M,D,φ) is determined as usual up to isotopy and conjugation. It is known that f is a pseudo-periodic homeomorphism of negative twist, that is, its mapping class [f] is either of finite order or reducible, and in the latter case, all component mapping classes are of finite order and its screw numbers are all negative. A family is said to be minimal if it is free of (−1)-curves. Two families (Mi,D,φi), i=1,2, are topologically equivalent if there exist homeomorphisms H:M1→M2 and h:D→D satisfying h(0)=0 and h∘φ1=φ2∘H.
Let Sg={minimal degenerating families of genus g} modulo topological equivalence. Denote by P−g the set of all pseudo-periodic mapping classes of negative twist of Σg. Then we have a well-defined map
monodromy ρ:Sg→P−g.
The main result is the following theorem: For g≥2, ρ:Sg→P−g is bijective. The most essential part of the proof of this theorem is to construct the inverse map of ρ, that is, for a given pseudo-periodic homeomorphism f of negative twist the authors construct a degenerating family (M,D,φ) of genus g with monodromy homeomorphism f.
In the second part of this paper the authors give a complete set of conjugacy invariants for the pseudo-periodic homeomorphisms of negative twist, which shows that Nielsen's set of invariants is not complete.