Generalized complementing maps
dc.book.title | Contribuciones matemáticas : homenaje al profesor Enrique Outerelo Domínguez | |
dc.contributor.author | Romero Ruiz del Portal, Francisco | |
dc.date.accessioned | 2023-06-20T13:38:56Z | |
dc.date.available | 2023-06-20T13:38:56Z | |
dc.date.issued | 2004 | |
dc.description.abstract | In this paper we apply the generalized degree introduced by Geba, Massabo and Vignoli, in [3], to extend the notion of complementing maps defined by Fitzpatrick, Massabo and Pejsachowicz, in [1] and [2]. On the other hand, we obtain, in low dimension, a bifurcation result in terms of the linking number of some 1-dimensional manifolds. We also present a global theorem that improves a Rabinowitz’s type result contained in [3] concerning the generalized degree. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MCyT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/19898 | |
dc.identifier.isbn | 84-7491-767-0 | |
dc.identifier.officialurl | http://www.mat.ucm.es/~jesusr/Enrique/pdfs/promero.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53199 | |
dc.language.iso | eng | |
dc.page.final | 369 | |
dc.page.initial | 357 | |
dc.page.total | 406 | |
dc.publication.place | Madrid | |
dc.publisher | Complutense | |
dc.relation.projectID | BFM 2003-00825. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51 | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Generalized degree | |
dc.subject.keyword | Bifurcation | |
dc.subject.keyword | Framed manifold. | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | Generalized complementing maps | |
dc.type | book part | |
dcterms.references | P.M. Fitzpatrick, I. Massabo, J. Pejsachowicz: On the overing dimension of the set of solutions of some nonlinear equations. Transactions AMS 296 (1986), no.2, 777–798. P.M. Fitzpatrick, I. Massabo, J. Pejsachowicz: Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps. Math. Ann. 263 (1983), 61–73. K. Geba, I. Massabo, A. Vignoli: Generalized degree and bifurcation. Nonlinear Funct.Analysis and Appl. (1986), 55–73. K. Geba: Cohomotopy groups and bifurcation. Topological methods in bifurcation theory.Les Presses de l’Universit´e de Montreal, 1985. M.W. Hirsch: Differential topology. Springer-Verlag, Berlin 1976. S.T. Hu: Homotopy theory. Academic Press, 1959. J. Ize, I. Massabo, A. Vignoli: Degree theory for equivariant maps. Transactions AMS 315 (1989),433–510. J. Ize, I. Massabo, J. Pejsachowicz, A.Vignoli: Structure and dimension of global branches of solutions of multiparameter nonlinear equations.Transactions AMS 291(1985), no.2,383–435. M.A. Kervaire: An interpretation of G. Whitehead’s generalization of Hopf’s invariant.Annals of Math. 69 (1959), no.2, 345–365. L.S. Pontryagin: Smooth manifolds and their applications in homotopy theory. Amer.Math. Soc. Translations. 11 (1959), 1–114. F.R. Ruiz del Portal: On the additivity property of the generalized degree. Math. Japonica 37 (1992), 657–664. F.R. Ruiz del Portal: On a generalized degree theory for continuous maps between manifolds.Tsukuba J. Math., 17 (1993), no. 2, 323–338. F.R. Ruiz del Portal: Generalized degree in normed spaces. Publi.Matematiques, Univ. Aut. de Barcelona 36 (1992), 157–166. F.R. Ruiz del Portal: Teorıa del grado topologico generalizado y aplicaciones. Tesis Doctoral, Univ.Complutense de Madrid, 1990. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1