Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Accuracy of five different 3D printing workflows for dental models comparing industrial and dental desktop printers

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

Objectives The aim of this study was to evaluate the accuracy, in terms of trueness and precision, of printed models using five different industrial and dental desktop 3D printers. Materials and methods Full-arch digital models with scanbodies of 15 patients were printed with five different 3D printers. The industrial printers were 3D system Project MJP2500 (3DS) and Objet30 OrthoDesk (Obj). The dental desktop printers were NextDent 5100 (ND), Formlabs Form 2 (FL) and Rapidshape D30 (RS). A total of 225 printed models were analysed. The printed models were digitized and compared with the reference cast model using the Control X software (Geomagic). The descriptive statistics and one-way ANOVA with the post hoc Tukey test were performed (α = 0.05). Results The one-way ANOVA for the trueness and precision of the printed model presented the best results for the 3DS, followed by ND, Obj, FL and RS (P < 0.01). In the scanbody zone, the best results were for the 3DS group, followed by Obj, ND, FL and RS (P < 0.01). Comparing the technologies, the Multijet technology used in industrial printers presented better results than the DLP and SLA technologies used in dental desktop printers (P > 0.01). Conclusions There were statistically significant differences in terms of the accuracy of the printed models, with better results for the industrial than the dental desktop 3D printers. Clinical relevance The industrial 3D printers used in dental laboratories presented better accuracy than the in-office dental desktop 3D printers, and this should be considered when the best accuracy is needed to perform final prosthetic restorations.

Research Projects

Organizational Units

Journal Issue

Description

CRUE-CSIC (Acuerdos Transformativos 2022)

Keywords

Collections