Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T10:44:49Z
dc.date.available2023-06-20T10:44:49Z
dc.date.issued2003-06-01
dc.description© 2003 American Institute of Physics. The authors acknowledge C. A. I. de Impalntación Iónica (U. C. M.) for availability of deposition system and Dr. E. Iborra (E. T. S. I. T. Universidad Politécnica de Madrid) for availability of FTIR spectrometer. The work has been partially financed by the CICYT (Spain) under Contract No. TIC 01-1253. Technical support of G. Keiler is gratefully acknowledged.
dc.description.abstractSiOxNyHz films were deposited from O-2, N-2, and SiH4 gas mixtures at room temperature using the electron cyclotron resonance plasma method. The absolute concentrations of all the species present in the films (Si, O, N, and H) were measured with high precision by heavy-ion elastic recoil detection analysis. The composition of the films was controlled over the whole composition range by adjusting the precursor-gases flow ratio during deposition. The relative incorporation of O and N is determined by the ratio Q = phi(O-2)/(phi(SiH4) and the relative content of Si is determined by R =[phi(O-2)+phi(N-2)]/phi(SiH4) where phi(SiH4), phi(O-2), and phi(N-2) are the SiH4, O-2, and N-2 gas flows, respectively. The optical properties (infrared absorption and refractive index) and the density of paramagnetic defects were analyzed in dependence on the film composition. Single-phase homogeneous films were obtained at low SiH4 partial pressure during deposition; while those samples deposited at high SiH4 partial pressure show evidence of separation of two phases. The refractive index was controlled over the whole range between silicon nitride and silicon oxide, with values slightly lower than in stoichiometric films due to the incorporation of H, which results in a lower density of the films. The most important paramagnetic defects detected in the films were the K center and the E' center. Defects related to N were also detected in some samples. The total density of defects in SiOxNyHz films was higher than in SiO2 and lower than in silicon nitride films.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26139
dc.identifier.doi10.1063/1.1566476
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1566476
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51134
dc.issue.number11
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final8938
dc.page.initial8930
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTIC 01-1253
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSilicon-Oxynitride Films
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordParamagnetic Point-Defects
dc.subject.keywordNitride Thin-Films
dc.subject.keywordA-SiNx-H
dc.subject.keywordSubstrate-Temperature
dc.subject.keywordTetrahedron Model
dc.subject.keywordPlasma
dc.subject.keywordNitrogen
dc.subject.keywordGrowth.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOptical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition
dc.typejournal article
dc.volume.number93
dcterms.references1) Y. Ma and G. Lucovsky, J. Vac. Sci. Technol. B, 12, 2504 (1994). 2) L. Manchanda, G. R. Weber, Y. O. Kim, L. C. Feldman, N. Moryia, B. E. Weir, R. C. Kistler, M. L. Green, and D. Brasen, Microelectron. Eng., 22, 69 (1993). 3) E. C. Carr and R. A. Buhrman, Appl. Phys. Lett., 63, 54 (1993). 4) T. Arakawa, R. Matsumoto, and A. Kita, Jpn. J. Appl. Phys., Part 1, 35, 1491 (1996). 5) W. A. P. Claassen, H. A. J. Th. v. d. Pol, A. H. Goemans, and A. E. T. Kuiper, J. Electrochem. Soc., 133, 1458 (1986). 6) P. V. Bulkin, P. L. Swart, and B. M. Lacquet, J. Non-Cryst. Solids, 187, 484 (1995). 7) S. Callard, A. Gagnaire, and J. Joseph, J. Vac. Sci. Technol. A, 15, 2088 (1997). 8) F. Gaillard, P. Schiavone, and P. Brault, J. Vac. Sci. Technol. A, 15, 2777 (1997). 9) H. T. Tang, W.N. Lennard, C. S. Zhang, K. Griffiths, B. Li, L. C. Feldman, and M. L. Green, J. Appl. Phys., 80, 1816 (1996). 10) I. J. R. Baumvol, F. C. Stedile, J.-J. Ganem, I. Trimaille, and S. Rigo, Appl. Phys. Lett., 70, 2007 (1997). 11) L.-N. He, T. Inokuma, and S. Hasegawa, Jpn. J. Appl. Phys., Part 1, 35, 1503 (1996). 12) S. V. Hattangady, H. Niimi, and G. Lucovsky, J. Vac. Sci. Technol. A, 14, 3017 (1996). 13) M. J. Hernández, J. Garrido, J. Martínez, and J. Piqueras, Semicond. Sci. Technol., 12, 927 (1997). 14) Á. del Prado, I. Mártil, M. Fernández, and G. González-Díaz, Thin Solid Films, 343–344, 432 (1999). 15) Á. del Prado, F. L. Martínez, M. Fernández, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A, 17, 1263 (1999). 16) S. García, J. M. Martín, M. Fernández, I. Mártil, and G. González-Díaz, Philos. Mag., 73, 487 (1996). 17) F. L. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids, 227–230, 523 (1998). 18) W. Bohne, J. Röhrich, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 136–138, 633 (1998). 19) W. Bohne, W. Fuhs, J. Röhrich, B. Selle, I. Sieber, Á. del Prado, E. San Andrés, I. Mártil, and G. González-Díaz, Surf. Interface Anal., 34, 749 (2002). 20) W. A. Lanford and M. J. Rand, J. Appl. Phys., 49, 2473 (1978). 21) T. S. Eriksson and C. G. Granqvist, J. Appl. Phys., 60, 2081 (1986). 22) Á. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Röhrich, B. Selle, and M. Fernández, Vacuum, 67, 507 (2002). 23) S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981). 24) A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, and L. Zanotti, J. Non-Cryst. Solids, 187, 395 (1995). 25) G. Lucovsky, Solid State Commun., 29, 571 (1979). 26) J.-L. Yeh and S.-C. Lee, J. Appl. Phys., 79, 656 (1996). 27) Y. Cros and J. C. Rostaing, Proceedings E: Materials Research Society, Strasbourg, June 1986, p. 77. 28) G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, Phys. Rev. B, 28, 3234 (1983). 29) A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, J. Vac. Sci. Technol. A, 15, 377 (1997). 30) D. V. Tsu, G. Lucovsky, M. J. Mantini, and S. S. Chao, J. Vac. Sci. Technol. A, 5, 1998 (1987). 31) H. R. Philipp, J. Non-Cryst. Solids, 8–10, 627 (1972). 32) A. Sassella, Phys. Rev. B, 48, 14208 (1993). 33) J. S. Blakemore, Solid State Physics (Cambridge University Press, Cambridge, 1985). 34) W. L. Warren, J. Kanicki, F. C. Rong, and E. H. Poindexter, J. Electrochem. Soc., 139, 880 (1992). 35) W. L. Warren, E. H. Poindexter, M. Offenberg, and W. Müller-Warmuth, J. Electrochem. Soc., 139, 872 (1992). 36) W. L. Warren, P. M. Lenahan, and S. E. Curry, Phys. Rev. Lett., 65, 207 (1990). 37) S. Hasegawa, S. Sakamori, M. Futatsudera, T. Inokuma, and Y. Kurata, J. Appl. Phys., 89, 2598 (2001). 38) J. H. Stathis, J. Chapple-Sokol, E. Tierney, and J. Batey, Appl. Phys. Lett., 56, 2111 (1990). 39) T. E. Tsai, D. L. Griscom, and E. J. Friebele, Phys. Rev. B, 38, 2140 (1988). 40) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, F. L. Martínez, D. Bravo, F. J. López, and M. Fernández, Vacuum, 67, 525 (2002). 41) F. L. Martínez, Á. del Prado, I. Mártil, G. González-Díaz, W. Bohne, W. Fuhs, J. Röhrich, and B. Selle, Phys. Rev. B, 63, 245320 (2001). 42) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F.J. López, J. Appl. Phys., 92, 1906 (2002). 43) D. L. Smith, J. Vac. Sci. Technol. A, 11, 1843 (1993). 44) P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A, 4, 689 (1986). 45) C. M. M. Denisse, K. Z. Troost, J. B. Oude Elferink, F. H. P. M. Habraken, W. F. van der Weg, and M. Hendriks, J. Appl. Phys., 60, 2536 (1986). 46) B.-R. Zhang, Z. Yu, G. J. Collins, T. Hwang, and W. H. Ritchie, J. Vac. Sci. Technol. A, 7, 176 (1989). 47) L. Pinard and J. M. Mackowski, Appl. Opt., 36, 5451 (1997).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,53libre.pdf
Size:
300.05 KB
Format:
Adobe Portable Document Format

Collections