Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Numerical study of electron-tunneling through heterostructures

dc.contributor.authorMéndez Martín, María Bianchi
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T18:57:06Z
dc.date.available2023-06-20T18:57:06Z
dc.date.issued1994-02
dc.description©1994 American Association of physics Teachers
dc.description.abstractA numerical scheme based on the discretized form of the one-dimensional Schrodinger equation is presented. Using a transfer matrix method we recursively compute the transmission coefficient for electrons in arbitrary potentials. The computation time and storage are much reduced so that the code may be implemented by most programmable pocket calculators. The numerical method is used to study electron tunneling through single and double heterostructures, and the accuracy of the method is discussed.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24973
dc.identifier.issn0002-9505
dc.identifier.officialurlhttp://ajp.aapt.org/resource/1/ajpias/v62/i2/p143_s1
dc.identifier.relatedurlhttp://ajp.aapt.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58984
dc.issue.number2
dc.journal.titleAmerican Journal of Physics
dc.language.isoeng
dc.page.final147
dc.page.initial143
dc.publisherAmer Inst Physics
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordEducation
dc.subject.keywordScientific Disciplines
dc.subject.keywordPhysics
dc.subject.keywordMultidisciplinary
dc.subject.ucmFísica de materiales
dc.titleNumerical study of electron-tunneling through heterostructures
dc.typejournal article
dc.volume.number62
dcterms.references1. J. Jaros, Physics Application of Semiconductor Microestructures (Clarendon, Oxfors, 1989), p. 190. 2. F. Capasso and R. A. Kiehl, “Resonant tunneling transistor with quantum wel base and high-energy injection:A negative differential resistance device,” J. Appl. Phys. 58 1366 (1985). 3. J. Hermans, D. L. Partin, P. D. Dresselhaus, and B. Lax, “Tuneling through narrow-gap semiconductor barriers” Appl. Lett. 48, 644-646 (1986). 4. R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Appl. Phys. Lett. 22, 265-564 (1973). 5. H. Cruz, A. Hernández-Cabrera, and A. Muñoz, “Resonant tunneling of electrons through parabolic quantum Wells: An analytical calculation of the transmission coefficient”, Semicond, Sci Technol. 6, 218-222 (1991). 6. B. Méndez, F. Domínguez-adame, and E. Maciá, “Atranfer matrix method for the determination of one-dimensionalband structures,” J. Phys. A. : Math. Gen. 26, 171-177 (1993). 7. F. Schwabl, Quantum Mechanics (Springer, New York, 1992), p. 56.
dspace.entity.typePublication
relation.isAuthorOfPublication465cfd5b-6dd4-4a48-a6e3-160df06f7046
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MendezBianchi73libre.pdf
Size:
732.63 KB
Format:
Adobe Portable Document Format

Collections