Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Determination of the optimum sampling frequency of noisy images by spatial statistics

dc.contributor.authorSánchez Brea, Luis Miguel
dc.contributor.authorBernabeu Martínez, Eusebio
dc.date.accessioned2023-06-20T10:46:29Z
dc.date.available2023-06-20T10:46:29Z
dc.date.issued2005-06-01
dc.description© 2005 Optical Society of America. L. M. Sánchez-Brea is contracted by the Universidad Complutense de Madrid within the Ramón y Cajal program, of the Ministerio de Educación y Ciencia of Spain.
dc.description.abstractIn optical metrology the final experimental result is normally an image acquired with a CCD camera. Owing to the sampling at the image, an interpolation is usually required. For determining the error in the measured parameters with that image, knowledge of the uncertainty at the interpolation is essential. We analyze how kriging, an estimator used in spatial statistics, can generate convolution kernels for filtering noise in regularly sampled images. The convolution kernel obtained with kriging explicitly depends on the spatial correlation and also on metrological conditions, such as the random fluctuations of the measured quantity, and the resolution of the measuring devices. Kriging, in addition, allows us to determine the uncertainty of the interpolation, and we have analyzed it in terms of the sampling frequency and the random fluctuations of the image, comparing it with Nyquist criterion. By use of kriging, it is possible to determine the optimum-required sampling frequency for a noisy image so that the uncertainty at interpolation is below a threshold value.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26737
dc.identifier.doi10.1364/AO.44.003276
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.44.003276
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51196
dc.issue.number16
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final3286
dc.page.initial3276
dc.publisherThe Optical Society Of America
dc.relation.projectIDPrograma Ramón y Cajal
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordShannon
dc.subject.keywordTheory
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleDetermination of the optimum sampling frequency of noisy images by spatial statistics
dc.typejournal article
dc.volume.number44
dcterms.references1. W. K. Pratt, Digital Image Processing (Wiley, New York, 1978). 2. H. P. Urbach, “Generalised sampling theorem for band-limited functions”, Math. Comput. Modell. 38, 133–140 (2003). 3. A. Stern, B. Javidi, “Sampling in the light of Wigner distribution”, J. Opt. Soc. Am. A 21, 360–366 (2004). 4. A. Stern, B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields”, Opt. Eng. 43, 239–250 (2004). 5. C. E. Shannon, “Communication in presence of noise”, Proc. IRE 37, 20–21 (1949). 6. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE, Bellingham, Wash., 1996). 7. A. J. Jerri, “The Shannon sampling theorem—its various extensions and applications”, Proc. IEEE 65, 1565–1596 (1977). 8. K. F. Cheung, R. J. Marks, “Imaging sampling below the Nyquist density without aliasing”, J. Opt. Soc. Am. A 7, 92–105 (1990). 9. M. Pawlak, U. Stadmüller, “Recovering band-limited signals under noise”, IEEE Trans. Inf. Theory 42, 1425–1438 (1996). 10. M. Unser, “Sampling—50 years after Shannon”, Proc. IEEE 88, 569–587 (2000). 11. P. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969). 12. ISO, Guide to the Expression of the Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1995). 13. R. Christiensen, Linear Models for Multivariate, Time Series, and Spatial Data (Springer-Verlag, Berlin, 1985). 14. N. Cressie, Statistics for Spatial Data (Wiley, New York, 1991). 15. E. Bernabéu, I. Serroukh, L. M. Sanchez-Brea, “A geometrical model for wire optical diffraction selected by experimental statistical analysis”, Opt. Eng. 38, 1319–1325 (1999). 16. D. Mainy, J. P. Nectoux, D. Renard, “New developments in data processing of noisy images”, Mater. Charact. 36, 327–334 (1996). 17. W. Y. V. Leung, P. J. Bones, R. G. Lane, “Statistical interpolation of sampled images”, Opt. Eng. 40, 547–553 (2001). 18. T. D. Pham, M. Wagner, “Image enhancement by kriging and fuzzy sets”, Int. J. Pattern Recognit. 14, 1025–1038 (2000). 19. G. Y. Hu, R. F. O’Connell, “Analytical inversion of symmetric tridiagonal matrices”, J. Phys. A 29, 1511–1513 (1996). 20. G. S. Ammar, W. B. Gragg, “Superfast solution of real positive definite Toeplitz systems”, SIAM J. Matrix Anal. Appl. 9, 61–76 (1988). 21. W. H. Press, S. A. Teukolski, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992). 22. J. P. Chilès, P. Delfiner, Geostatistics (Wiley, New York, 1999). 23. L. M. Sánchez-Brea, E. Bernabéu, “On the standard deviation in charge-coupled device cameras: a variogram-based technique for nonuniform images”, J. Electron. Imaging 11, 121–126 (2002). 24. G. Cloud, Optical Methods of Engineering Analysis (Cambridge U. Press, Cambridge, UK, 1998).
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E46libre.pdf
Size:
570.44 KB
Format:
Adobe Portable Document Format

Collections