Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A stochastic SIS epidemic model with heterogeneous contacts

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

A stochastic model for the spread of an SIS epidemic among a population consisting of N individuals, each having heterogeneous infectiousness and/or susceptibility, is considered and its behavior is analyzed under the practically relevant situation when N is small. The model is formulated as a finite time-homogeneous continuous-time Markov chain X. Based on an appropriate labeling of states, we first construct its infinitesimal rate matrix by using an iterative argument, and we then present an algorithmic procedure for computing steady-state measures, such as the number of infected individuals, the length of an outbreak, the maximum number of infectives, and the number of infections suffered by a marked individual during an outbreak. The time till the epidemic extinction is characterized as a phase-type random variable when there is no external source of infection, and its Laplace-Stieltjes transform and moments are derived in terms of a forward elimination backward substitution solution. The inverse iteration method is applied to the quasi-stationary distribution of X, which provides a good approximation of the process X at a certain time, conditional on non-extinction, after a suitable waiting time. The basic reproduction number R-0 is defined here as a random variable, rather than an expected value.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections