Dark energy and cosmic magnetic fields: electromagnetic relics from inflation

No Thumbnail Available
Full text at PDC
Publication Date
Beltrán Jiménez, José
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Springer-Verlag Berlin
Google Scholar
Research Projects
Organizational Units
Journal Issue
We consider an extended electromagnetic theory in which the scalar state which is usually eliminated be means of the Lorenz condition is allowed to propagate. On super-Hubble scales, such a state is given by the temporal component of the electromagnetic potential and contributes as an effective cosmological constant to the energy-momentum tensor. Its initial amplitude is set by quantum fluctuations generated during inflation and it is shown that the predicted value for the cosmological constant agrees with observations provided inflation took place at the electroweak scale. We also consider more general theories including non-minimal couplings to the space-time curvature in the presence of the temporal electromagnetic background. We show that both in the minimal and non minimal cases, the modified Maxwell's equations include new effective current terms which can generate magnetic fields from sub-galactic scales up to the present Hubble horizon. The corresponding amplitudes could be enough to seed a galactic dynamo or even to account for observations just by collapse and differential rotation in the protogalactic cloud.
© 2011. Conference on Cosmology, Quantum Vacuum Fluctuations and Zeta Functions (2010. Barcelona, España)
Unesco subjects
1. J. Beltrán Jiménez and A.L. Maroto, JCAP 0903 (2009) 016; Int. J. Mod. Phys. D 18 (2009) 2243 2. J. Beltrán Jiménez and A.L. Maroto, Phys. Lett. B 686 (2010) 175 3. J. B. Jimenez, T. S. Koivisto, A. L. Maroto and D. F. Mota, JCAP 0910 (2009) 029 4. L. M. Widrow, Rev. Mod. Phys. 74 (2002) 775; R. M. Kulsrud and E. G. Zweibel, Rept. Prog. Phys. 71 (2008) 0046091; P. P. Kronberg, Rept. Prog. Phys. 57 (1994) 325. 5. A. Neronov and I. Vovk, Science 328 (2010) 73; F. Tavecchio, et al., arXiv:1004.1329 6. C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-Hill (1980); N.N. Bogoliubov and D.V. Shirkov, Introduction to the theory of quantized fields, Interscience Publishers, Inc. (1959). 7. A. Higuchi, L. Parker and Y. Wang, Phys. Rev. D 42, 4078 (1990). CrossRef 8. S. Deser, Ann. Inst. Henri Poincaré, 16: 79 (1972) 9. M. J. Pfenning, Phys. Rev. D65 024009 (2002). 10. Y. Urakawa and T. Tanaka, Prog. Theor. Phys. 122 (2009) 779 CrossRef 11. C. Will, Theory and experiment in gravitational physics, Cambridge University Press, (1993) 12. J. B. Jimenez and A. L. Maroto, JCAP 0902 (2009) 025 13. C. Caprini, S. Biller and P. G. Ferreira, JCAP 0502 (2005) 006 14. J. Beltrán Jiménez and A.L. Maroto, Cosmological magnetic fields from inflation in extended electromagentism, arXiv:1010.3960 [astro-ph.CO] 15. J. Beltrán Jiménez and A.L. Maroto, Dark energy, non-minimal couplings and the origin of cosmic magnetic fields, arXiv:1010.4513 [astro-ph.CO] 16. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge (1973); G. M. Shore, arXiv:gr-qc/0302116. 17. C. Eling, Phys. Rev. D 73 (2006) 084026 CrossRef 18. A. Schuster, Proc. Lond. Phys. Soc. 24 (1912) 121; A. Einstein, Schw. Naturf. Ges. Verh. 105 Pt. 2, 85 (1924) S. Saunders S and H.R. Brown, Philosophy of Vacuum (Oxford: Clarendon) (1991); P. M. S. Blackett, Nature 159 (1947) 658 19. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667 (2008) 1 CrossRef 20. R. Opher and U. F. Wichoski, Phys. Rev. Lett. 78 (1997) 787; R. da Silva de Souza, R. Opher, JCAP 1002 (2010) 022