Metamateriales fluidos. Fenómenos de memoria y dinámicos en metamateriales fluidos
Loading...
Official URL
Full text at PDC
Publication date
2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Este trabajo aborda el estudio interdisciplinario de los metamateriales fluidos, enfocándose en la dinámica de los poros activos, las redes de flujo y sus fenómenos colectivos emergentes. Mediante un enfoque teórico y numérico, se analizan los mecanismos que gobiernan el transporte y la mezcla de fluidos en sistemas interconectados con geometrías y propiedades químicas inhomogéneas. Los resultados muestran cómo las interacciones no lineales en redes de flujo generan fenómenos complejos, como la ruptura de simetría y efectos de memoria, destacando su relevancia en el modelado de sistemas biológicos con elementos no lineales. Además, se aportan nuevas perspectivas sobre el diseño y simulación de sistemas fluidos para redes de flujo complejas.
This work addresses the interdisciplinary study of fluid metamaterials, focusing on the dynamics of active pores, flow networks, and their emerging collective phenomena. Through a theoretical and numerical approach, we analyze the mechanisms governing fluid transport and mixing in interconnected systems with inhomogeneous geometries and chemical properties. The results reveal how nonlinear interactions in flow networks generate complex phenomena, such as symmetry breaking and memory effects, highlighting their relevance in modeling biological systems with nonlinear elements. Furthermore, new perspectives are provided on the design and simulation of fluid systems for complex flow networks.
This work addresses the interdisciplinary study of fluid metamaterials, focusing on the dynamics of active pores, flow networks, and their emerging collective phenomena. Through a theoretical and numerical approach, we analyze the mechanisms governing fluid transport and mixing in interconnected systems with inhomogeneous geometries and chemical properties. The results reveal how nonlinear interactions in flow networks generate complex phenomena, such as symmetry breaking and memory effects, highlighting their relevance in modeling biological systems with nonlinear elements. Furthermore, new perspectives are provided on the design and simulation of fluid systems for complex flow networks.







