Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Kink stability, propagation, and length-scale competition in the periodically modulated sine-gordon equation

dc.contributor.authorSánchez, Angel
dc.contributor.authorBishop, A. R.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T20:16:20Z
dc.date.available2023-06-20T20:16:20Z
dc.date.issued1994-05
dc.description© 1994 The American Physical Society. We are indebted to Rainer Scharf, David Cai, and Maxi San Miguel for enlightening conversations on this research. A.S. is supported by the Ministerio de Educacion y Ciencia (Spain) and the Fulbright Fund, by Direccion General de Investigacion Cientifica y Tecnica (Spain) through Project No. PB92-0378, and by the European Union (¹tmork on Nonlinear Spatio-Temporal Structures in Semiconductor, Fluids, and Oscillator Ensembles). He also thanks the Los Alamos National Laboratory for warm hospitality and a productive atmosphere. Work at Los Alamos is performed under the auspices of the U.S. Department of Energy.
dc.description.abstractWe have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and related nonlinear problems in four directions. First, we present the results of a numerical simulation program that are not compatible with the existence of a radiative threshold predicted by earlier calculations. Second, we carry out a perturbative calculation that helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it reproduces accurately the observed kink dynamics. Fourth, we report on the occurrence of length-scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.sponsorshipPrograma Fulbright
dc.description.sponsorshipDirección General de Investigación Científica y Técnica (DGICYT), España
dc.description.sponsorshipUnión Europea (UE)
dc.description.sponsorshipU.S. Department of Energy
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37919
dc.identifier.doi10.1103/PhysRevE.49.4603
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.49.4603
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59987
dc.issue.number5
dc.journal.titlePhysical review E
dc.language.isoeng
dc.page.final4615
dc.page.initial4603
dc.publisherAmerican Physical Society
dc.relation.projectIDPB92-0378
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordNonlinear Schrodinger-equation
dc.subject.keywordDynamics
dc.subject.keywordPotentials
dc.subject.keywordSystem
dc.subject.keywordPerturbations
dc.subject.keywordSolitons
dc.subject.keywordWaves
dc.subject.keywordModel
dc.subject.ucmFísica de materiales
dc.titleKink stability, propagation, and length-scale competition in the periodically modulated sine-gordon equation
dc.typejournal article
dc.volume.number49
dcterms.references1. Disorder and Nonlinearity, edited by A. R. Bishop, D. K. Campbell, and St. Pnevmatikos, Springer Proceedings in Physics Vol. 39 (Springer Verlag, Berlin, 1989); Nonlinearity with Disorder, edited by F. Kh. Abdullaev, A. R. Bishop, and St. Pnevmatikos, Springer Proceedings in Physics Vol. 67 (Springer Verlag, Berlin, 1992). 2. Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989). 3. A. Sánchez and L. Vázquez, Int. J. Mod. Phys. B 5, 2825 (1991); S. A. Gredeskul and Yu. S. Kivshar, Phys. Rep. 216, 1 (1992). 4. A. Sánchez, R. Scharf, A. R. Bishop and L. Vázquez, Phys. Rev. A 45, 6031 (1992). 5. R. Scharf, Yu. S. Kivshar, A. Sánchez and A. R. Bishop, Phys. Rev. A 45, R5369 (1992). 6. R. Scharf and A. R. Bishop, Phys. Rev. E 47, 1375 (1993). 7. R. Scharf and A. R. Bishop, Phys. Rev. A 46, R2973 (1992). 8. G. S. Mkrtchyan and V. V. Shmidt, Solid State Commun. 30, 791 (1979). 9. B. A. Malomed, Phys. Lett. A 144, 351 (1990). 10. B. A. Malomed and M. I. Tribelsky, Phys. Rev. B 41, 11271 (1990). 11. A. Sánchez, F. Domí nguez Adame, and A. R. Bishop, Los Alamos National Laboratory Report No. LA UR 93 3740, 1993 (unpublished). 12. M. B. Fogel, S. E. Trullinger, A. R. Bishop and J. A. Krumhansl, Phys. Rev. Lett. 24, 1411 (1976); Phys. Rev. B 15, 1578 (1977) M. B. Fogel, S. E. Trullinger and A. R. Bishop, Phys. Lett.59A, 81 (1976). 13. A. Sánchez, L. Vázquez and V. V. Konotop, Phys. Rev. A 44, 1086 (1991). 14. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, New York, 1992). 15. M. Peyrard and M. D. Kruskal, Physica D 14, 88 (1984). 16. Z. Fei, V. V. Konotop, M. Peyrard and L. Vázquez, Phys. Rev. E 48, 548 (1993). 17. R. J. Flesch and S. E. Trullinger, J. Math. Phys. 28, 1619 (1987); A. Galindo and P. Pascual,Quantum Mechanics I (Springer Verlag, Berlin, 1990). 18. It is possible to analyze the long wavelength limit of the spectrum analytically by means of an averaging technique, which leads to the result that the minimum frequency is given by ωmin2= 1-(ε2/2k2), in good agreement with our numerical calculation of the spectrum as can be seen from the figures. 19. V. V. Konotop, A. Sánchez and L. Vázquez, Phys. Rev. B 44, 2554 (1991).
dspace.entity.typePublication
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame158.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format

Collections