A neural network approach to determining photometric metallicities of M-type dwarf stars

dc.contributor.authorDuque Arribas, Christian
dc.contributor.authorTabernero, H. M.
dc.contributor.authorMontes Gutiérrez, David
dc.contributor.authorCaballero, J. A.
dc.contributor.authorGalceran, E.
dc.date.accessioned2025-07-30T08:07:29Z
dc.date.available2025-07-30T08:07:29Z
dc.date.issued2025
dc.description.abstractContext. M dwarfs are the most abundant stars in the Galaxy and serve as key targets for stellar and exoplanetary studies. It is particularly challenging to determine their metallicities because their spectra are complex. For this reason, several authors have focused on photometric estimates of the M-dwarf metallicity. Although artificial neural networks have been used in the framework of modern astrophysics, their application to a photometric metallicity estimate for M dwarfs remains unexplored. Aims. We develop an accurate method for estimating the photometric metallicities of M dwarfs using artificial neural networks to address the limitations of traditional empirical approaches. Methods. We trained a neural network on a dataset of M dwarfs with spectroscopically derived metallicities. We used eight absolute magnitudes in the visible and infrared from Gaia, 2MASS, and WISE as input features. Batch normalization and dropout regularization stabilized the training and prevented overfitting. We applied the Monte Carlo dropout technique to obtain more robust predictions. Results. The neural network demonstrated a strong performance in estimating photometric metallicities for M dwarfs in the range of −0.45 ≤ [Fe/H] ≤ +0.45 dex and for spectral types as late as M5.0 V. On the test sample, the predictions showed uncertainties down to 0.08 dex. This surpasses the accuracy of previous methods. We further validated our results using an additional sample of 46 M dwarfs in wide binary systems with FGK-type primary stars with well-defined metallicities and achieved an excellent predictive performance that surpassed the 0.1 dex error threshold. Conclusions. This study introduces a machine-learning-based framework for estimating the photometric metallicities of M dwarfs and provides a scalable data-driven solution for analyzing large photometric surveys. The results outline the potential of artificial neural networks to enhance the determination of stellar parameters, and they offer promising prospects for future applications.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Regional Development Fund
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.statuspub
dc.identifier.citationDuque-Arribas, C., Tabernero, H. M., Montes, D., Caballero, J. A., & Galceran, E. (2025). A neural network approach to determining photometric metallicities of M-type dwarf stars. Astronomy & Astrophysics, 698, L12.
dc.identifier.doi10.1051/0004-6361/202554722
dc.identifier.essn1432-0746
dc.identifier.issn0004-6361
dc.identifier.officialurlhttps://doi.org/10.1051/0004-6361/202554722
dc.identifier.relatedurlhttps://www.aanda.org/articles/aa/full_html/2025/06/aa54722-25/aa54722-25.html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122890
dc.journal.titleAstronomy & Astrophysics
dc.language.isoeng
dc.page.finalL12-6
dc.page.initialL12-1
dc.publisherEDP Sciences
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138855NB-C31/ES/LA FORMACION DE GALAXIAS EN LA ESTRUCTURA A GRAN ESCALA: OBSERVATIONS/
dc.relation.projectIDAEI/10.13039/501100011033
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137241NB-C41/ES/FORMACION Y EVOLUCION DE PLANETAS Y ENANAS MARRONES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138855NB-C31/ES/LA FORMACION DE GALAXIAS EN LA ESTRUCTURA A GRAN ESCALA: OBSERVATIONS/
dc.relation.projectIDSPOTLESS 101140786
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu52-33
dc.subject.keywordStars: abundances
dc.subject.keywordStars: fundamental parameters
dc.subject.keywordHertzsprung–Russell and C–M diagrams
dc.subject.keywordStars: late-type
dc.subject.keywordStars: low-mass
dc.subject.ucmAstrofísica
dc.subject.unesco21 Astronomía y Astrofísica
dc.titleA neural network approach to determining photometric metallicities of M-type dwarf stars
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number698
dspace.entity.typePublication
relation.isAuthorOfPublication40a8f8c5-7737-40d9-9579-e3f242f62432
relation.isAuthorOfPublication2dfe4286-12c7-4d3a-bfda-d298a90cc8fe
relation.isAuthorOfPublication.latestForDiscovery40a8f8c5-7737-40d9-9579-e3f242f62432

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
aa54722-25.pdf
Size:
911.82 KB
Format:
Adobe Portable Document Format

Collections