Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Semilocal strings and monopoles

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorSamols, T.M.
dc.contributor.authorOrtiz, M.E.
dc.contributor.authorGibbons, G.W.
dc.date.accessioned2023-06-20T18:59:05Z
dc.date.available2023-06-20T18:59:05Z
dc.date.issued1992-10-19
dc.descriptionCopyright © 1992 Published by Elsevier B.V. We would like to thank Ana Achúcarro, Mark Hindmarsh, Nick Manton and Tanmay Vachaspati for helpful discussions. MEO wishes to thank the SERC for financial support. FRR was supported by The Commission of the European Communities through contract No. SC1000488 with The Niels Bohr Institute.
dc.description.abstractA variation on the abelian Higgs model, with SU(2)global x U(1)local symmetry broken to U(1)global, was recently shown by Vachaspati and Achucarro to admit stable, finite-energy cosmic string solutions, even though the manifold of minima of the potential energy does not have non-contractible loops. This new and unexpected feature motivates a full investigation of the properties of the model. Here we exploit the existence of first-order Bogomol'nyi equations to classify all static finite-energy vortex solutions in the Bogomol'nyi limit. We find a 4n-dimensional moduli space for the nth topological (n-vortex) sector. Single-vortex configurations depend on a position coordinate and on an additional complex parameter and may be regarded as hybrids of Nielsen-Olesen vortices and CP1 lumps. The model is also shown to obey Bogomol'nyi equations in curved space, and these allow a simple calculation of the gravitational field of the above configurations. Finally, monopole-like solutions interpolating between a Dirac monopole and a global monopole are found. These must be surrounded by an event horizon as isolated solutions, but may also arise as unstable end points of semi-local strings.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSERC
dc.description.sponsorshipCommission of the European Communities
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25425
dc.identifier.doi10.1016/0550-3213(92)90097-U
dc.identifier.issn0550-3213
dc.identifier.officialurlhttp://dx.doi.org/10.1016/0550-3213(92)90097-U
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-th/9203023
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59046
dc.journal.titleNuclear Physics B
dc.language.isoeng
dc.page.final144
dc.page.initial127
dc.publisherElsevier Science BV
dc.relation.projectIDSC1000488
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordCosmic Strings
dc.subject.keywordGlobal Monopole
dc.subject.keywordScattering
dc.subject.keywordEquations
dc.subject.keywordMotion
dc.subject.keywordModel
dc.subject.keyword1ST
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleSemilocal strings and monopoles
dc.typejournal article
dc.volume.number385
dcterms.references[1] T. Vachaspati and A. Achúcarro, Phys. Rev. D44 (1991) 3067. [2] M. Hindmarsh, Newcastle preprint NCL-91 TP7, 1991. [3] R. Rajaraman, Solitons and Instantons, Chapter 3. North Holland, Amsterdam, 1982. [4] A. Jaffe and C. Taubes, Vortices and Monopoles. Progress in Physics: 2. Birkhauser, Boston, 1980. C.H. Taubes, Commun. Math. Phys. 72 (1980) 277. C.H. Taubes, Commun. Math. Phys. 75 (1980) 207. [5] E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24 (1976) 449. [6] N.S. Manton, Phys. Lett. 110B (1982) 54. [7] P.J. Ruback, Nucl. Phys. B296 (1988) 669. T.M. Samols, Commun. Math. Phys. (to appear); Phys. Lett. 244B (1990) 285. [8] R. Leese, Nucl. Phys. B344 (1990) 33 and refs. therein. P.J. Ruback, Commun. Math. Phys. 107 (1986) 93. [9] G. W. Gibbons, M. E. Ortiz and F. Ruiz Ruiz, Phys. Lett. 240B (1990) 50. [10] A. Comtet and G. W. Gibbons, Nucl. Phys. B299 (1988) 719. [11] M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63 (1989) 341. [12] A. S. Goldhaber, Phys. Rev. Lett. 63 (1989) 2158(c). [13] G. W. Gibbons, Self-gravitating magnetic monopoles, global monopoles and black holes. In J. Barrow, A. B. Henriques, M. T. V. T. Lago and M. S. Longair editors, The Physical Universe, Proceedings of the XII Autumn School, Lisbon, 1990. Springer-Verlag, Berlin 1991.
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ruiz FR25preprint.pdf
Size:
176.21 KB
Format:
Adobe Portable Document Format

Collections