Solutions entropiques de problèmes non linéaires
dégénerés
dc.contributor.author | Carrillo Menéndez, José | |
dc.date.accessioned | 2023-06-20T16:53:36Z | |
dc.date.available | 2023-06-20T16:53:36Z | |
dc.date.issued | 1998-07 | |
dc.description | Contiene una versión abreviada del artículo original publicado en Arch. Rational Mech. Anal. 147 (1999) 269-361 | |
dc.description.abstract | We consider a class of elliptic-hyperbolic degenerate equations g(u) - Delta b(u) + div phi(u) = f With Dirichlet homogeneous boundary conditions, and a class of elliptic-parabolic-hyperbolic degenerate equations g(u)(t) - Delta b(u) + div phi(u) = f with homogeneous Dirichlet conditions and initial conditions. The existence and uniqueness of entropy solutions for both problems are proved for nondecreasing continuous functions g and b vanishing at zero, and for continuous vectorial function satisfying rather general conditions. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15596 | |
dc.identifier.doi | 10.1016/S0764-4442(98)80009-8 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0764444298800098 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57351 | |
dc.issue.number | 2 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.language.iso | eng | |
dc.page.final | 160 | |
dc.page.initial | 155 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Parabolic equations | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Solutions entropiques de problèmes non linéaires dégénerés | |
dc.type | journal article | |
dc.volume.number | 327 | |
dcterms.references | Bardos C., Leroux A.Y., NCdClec J.-C., First order quasilinear equations with boundary conditions, Commun. Partial Differ. Eq. 4 (9) (1979) 1017-1034. BCnilan Ph., Equations d’evolution dans un espace de Banach quelconque et applications, These d’Etat, Orsay, 1972. BCnilan Ph., Tome H., Sur J’equation generale r,,r = (P(~L),~ -$(?I)., +v, C. R. Acad. Sci. Paris t. 299 SCrie I (1984) 919-922. Canillo J., Entropy solutions of nonlinear degenerate problems (a paraitre). Kruzhkov S.N., Generalized solutions of the Cauchy problem in the large for non-linear equations of first order, Dokl. Akad. Nauk SSSR 187 (1) (1969) 29-32. (English transl.: Soviet Math. Dokl. 10 (1969).) Kruzhkov S.N., First order quasilinear equations in several independent variables, Mat. Sbomik 81 (2) (1970) 228-255. (English transl.: Math. USSR Sb. 10 (1970)) Oleinik O.A., On the equations of unsteady filtration type, Uspekhi Mat. Nauk 12 (1957) 3-73. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 48ac980d-beb1-40b0-acec-caec3a109b1c | |
relation.isAuthorOfPublication.latestForDiscovery | 48ac980d-beb1-40b0-acec-caec3a109b1c |
Download
Original bundle
1 - 1 of 1