Deep robot sketching: an application of deep Q-learning networks for human-like sketching

dc.contributor.authorFernández Fernández, Raúl
dc.contributor.authorVictores, Juan
dc.contributor.authorBalaguer, Carlos
dc.date.accessioned2023-06-22T11:22:04Z
dc.date.available2023-06-22T11:22:04Z
dc.date.issued2023
dc.description© 2023 The Authors. Published by Elsevier B.V. This research has been financed by ALMA, ‘‘Human Centric Algebraic Machine Learning’’, H2020 RIA under EU grant agreement 952091; ROBOASSET, ‘‘Sistemas robóticos inteligentes de diagnóstico y rehabilitación de terapias de miembro superior’’, PID2020-113508RBI00, financed by AEI/10.13039/501100011033; ‘‘RoboCity2030-DIHCM, Madrid Robotics Digital Innovation Hub’’, S2018/NMT-4331, financed by ‘‘Programas de Actividades I+D en la Comunidad de Madrid’’; ‘‘iREHAB: AI-powered Robotic Personalized Rehabilitation’’, ISCIIIAES-2022/003041 financed by ISCIII and UE; and EU structural funds
dc.description.abstractThe current success of Reinforcement Learning algorithms for its performance in complex environments has inspired many recent theoretical approaches to cognitive science. Artistic environments are studied within the cognitive science community as rich, natural, multi-sensory, multi-cultural environments. In this work, we propose the introduction of Reinforcement Learning for improving the control of artistic robot applications. Deep Q-learning Neural Networks (DQN) is one of the most successful algorithms for the implementation of Reinforcement Learning in robotics. DQN methods generate complex control policies for the execution of complex robot applications in a wide set of environments. Current art painting robot applications use simple control laws that limits the adaptability of the frameworks to a set of simple environments. In this work, the introduction of DQN within an art painting robot application is proposed. The goal is to study how the introduction of a complex control policy impacts the performance of a basic art painting robot application. The main expected contribution of this work is to serve as a first baseline for future works introducing DQN methods for complex art painting robot frameworks. Experiments consist of real world executions of human drawn sketches using the DQN generated policy and TEO, the humanoid robot. Results are compared in terms of similarity and obtained reward with respect to the reference inputs.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/ AEI/10.13039/501100011033;
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipInstituto de Salud Carlos III (ISCIII)/UE
dc.description.sponsorshipROBOTICSLAB
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/78519
dc.identifier.doi10.1016/j.cogsys.2023.05.004
dc.identifier.issn1389-0417
dc.identifier.officialurlhttps://doi.org/10.1016/j.cogsys.2023.05.004
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72355
dc.journal.titleCognitive systems research
dc.language.isoeng
dc.page.final63
dc.page.initial57
dc.publisherElsevier
dc.relation.projectIDALMA : Human Centric Algebraic Machine Learning (952091)
dc.relation.projectIDPID2020-113508RB-I00
dc.relation.projectID(RoboCity2030-DIH-CM; Madrid Robotics Digital Innovation Hub; S2018/NMT-4331)
dc.relation.projectIDISCIIIAES-2022/003041, iREHAB: AI-powered Robotic Personalized Rehabilitation
dc.relation.projectIDROBOASSET
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu004.8
dc.subject.keywordDeep Reinforcement Learning
dc.subject.keywordDeep Q-Networks
dc.subject.keywordRobotics
dc.subject.keywordRobotic art
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmSoftware
dc.subject.ucmRobótica
dc.subject.ucmCreación artística
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco3304.16 Diseño Lógico
dc.titleDeep robot sketching: an application of deep Q-learning networks for human-like sketching
dc.typejournal article
dc.volume.number81
dspace.entity.typePublication
relation.isAuthorOfPublication31151278-4822-4a64-88a7-1dfad9699a0d
relation.isAuthorOfPublication.latestForDiscovery31151278-4822-4a64-88a7-1dfad9699a0d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1389041723000372-main.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format

Collections