Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A mathematical model of a criminal-prone society

dc.contributor.authorNuño, Juan Carlos
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorPrimicerio, Mario
dc.date.accessioned2023-06-20T03:34:47Z
dc.date.available2023-06-20T03:34:47Z
dc.date.issued2011-02
dc.description.abstractCriminals are common to all societies. To fight against them the community takes different security measures as, for example, to bring about a police. Thus, crime causes a depletion of the common wealth not only by criminal acts but also because the cost of hiring a police force. In this paper, we present a mathematical model of a criminal-prone self-protected society that is divided into socio-economical classes. We study the effect of a non-null crime rate on a free-of-criminals society which is taken as a reference system. As a consequence, we define a criminal-prone society as one whose free-ofcriminals steady state is unstable under small perturbations of a certain socioeconomical context. Finally, we compare two alternative strategies to control crime: (i) enhancing police efficiency, either by enlarging its size or by updating its technology, against (ii) either reducing criminal appealing or promoting social classes at risk
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipItaly-Spain Integrated Action
dc.description.sponsorshipAcción Especial UCM
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22548
dc.identifier.doi10.3934/dcdss.2011.4.193
dc.identifier.issn1937-1632
dc.identifier.officialurlhttp://www.aimsciences.org/journals/displayArticles.jsp?paperID=5534
dc.identifier.relatedurlhttp://www.aimsciences.org
dc.identifier.relatedurlhttp://oa.upm.es/11927/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43942
dc.issue.number1
dc.journal.titleDiscrete and Continuous Dynamical Systems. Series S
dc.language.isoeng
dc.page.final207
dc.page.initial193
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.projectIDHI2006-0026
dc.relation.projectIDAE10/07-15449
dc.relation.projectIDFIS2006-08607
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu519.87
dc.subject.keywordCriminality
dc.subject.keywordpopulation dynamics
dc.subject.keywordnonlinear dynamical system
dc.subject.keywordsocial mobility
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1207 Investigación Operativa
dc.titleA mathematical model of a criminal-prone society
dc.typejournal article
dc.volume.number4
dcterms.referencesR. A. Araujo and T. B. S. Moreira, A dynamic model of production and traffic of drugs, Economic Letters, 82 (2004), 371–376. A. A. Berryman, The origins and evolution of predator-prey theory Ecology, 73 (1992), 1530–1535. M. Campbell and P. Ormerod, Social interactions and the dynamics of crime, http://www.volterra.co.uk/publications/04/crime.pdf E. Durkheim, "Le Crime PhÉnomène Normal. Les Regles de la Méthode Sociologique," Paris 14 ed. 1960, 65–72, 1894. J. Eck, Police problems: The complexity of problem theory, research and evaluation, in "Problem-Oriented Policing: From Innovation to Manistream" (ed. Johannes Knutsson), Crime prevention studies, vol. 15, Criminal Justice Press, Monsey, New York, 2003. M. Felson, "Crime and Nature," Sage Publications Inc., 2006. L. E. Cohen and M. Felson, Social change and crime rate trends: A routine activity approach, American Sociological Review, 44 (1979), 588–608. C. Lewis (ed.), "Modelling Crime and Offending: Recent Developments in England and Wales," Occasional paper no. 80, 2003. S. Kanazawa and M. C. Still, Why men commit crimes (and why they desist), Sociological Theory, 18 (2000), 434–447. J. C. Nuño, M. A. Herrero and M. Primicerio, A triangle model of criminality, Physica A, 387 (2008), 2926–2936. K. Pease, Science in the service of crime reduction, in "Handbook of Crime and Community Safety" (ed. Nick Telley), Willan Publishing Ltd., 2005. L. J. Peter and R. Hull, "The Peter Principle. Why Things Always Go Wrong," William Morrow & Co, New York, 1969. A. Quetelet, "Sur L'homme et le Developpement de ses Facultes, ou Essai de Physique Sociale," Bachelier, Paris, 1835. L. Real, The kinetics of functional response, American Naturalist, 111 (1977), 289–300. S. Pierazzini, Effect of crimes on a socially structured population, preprint, to be published. J. E. Strassmann, Rank crime and punishment, Nature, 432 (2004), 160–161. L. G. Vargo, A note on crime control, Bull. Math. Biophys., 28 (1966), 375–378. H. Zhao, F. Zhilan and C. Castillo-Chavez, The dynamics of poverty and crime, MTBI-02–08M, 2002.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero69.pdf
Size:
307.33 KB
Format:
Adobe Portable Document Format

Collections