A mathematical model of a criminal-prone society
dc.contributor.author | Nuño, Juan Carlos | |
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Primicerio, Mario | |
dc.date.accessioned | 2023-06-20T03:34:47Z | |
dc.date.available | 2023-06-20T03:34:47Z | |
dc.date.issued | 2011-02 | |
dc.description.abstract | Criminals are common to all societies. To fight against them the community takes different security measures as, for example, to bring about a police. Thus, crime causes a depletion of the common wealth not only by criminal acts but also because the cost of hiring a police force. In this paper, we present a mathematical model of a criminal-prone self-protected society that is divided into socio-economical classes. We study the effect of a non-null crime rate on a free-of-criminals society which is taken as a reference system. As a consequence, we define a criminal-prone society as one whose free-ofcriminals steady state is unstable under small perturbations of a certain socioeconomical context. Finally, we compare two alternative strategies to control crime: (i) enhancing police efficiency, either by enlarging its size or by updating its technology, against (ii) either reducing criminal appealing or promoting social classes at risk | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Italy-Spain Integrated Action | |
dc.description.sponsorship | Acción Especial UCM | |
dc.description.sponsorship | MEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22548 | |
dc.identifier.doi | 10.3934/dcdss.2011.4.193 | |
dc.identifier.issn | 1937-1632 | |
dc.identifier.officialurl | http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5534 | |
dc.identifier.relatedurl | http://www.aimsciences.org | |
dc.identifier.relatedurl | http://oa.upm.es/11927/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43942 | |
dc.issue.number | 1 | |
dc.journal.title | Discrete and Continuous Dynamical Systems. Series S | |
dc.language.iso | eng | |
dc.page.final | 207 | |
dc.page.initial | 193 | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.relation.projectID | HI2006-0026 | |
dc.relation.projectID | AE10/07-15449 | |
dc.relation.projectID | FIS2006-08607 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 519.87 | |
dc.subject.keyword | Criminality | |
dc.subject.keyword | population dynamics | |
dc.subject.keyword | nonlinear dynamical system | |
dc.subject.keyword | social mobility | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.title | A mathematical model of a criminal-prone society | |
dc.type | journal article | |
dc.volume.number | 4 | |
dcterms.references | R. A. Araujo and T. B. S. Moreira, A dynamic model of production and traffic of drugs, Economic Letters, 82 (2004), 371–376. A. A. Berryman, The origins and evolution of predator-prey theory Ecology, 73 (1992), 1530–1535. M. Campbell and P. Ormerod, Social interactions and the dynamics of crime, http://www.volterra.co.uk/publications/04/crime.pdf E. Durkheim, "Le Crime PhÉnomène Normal. Les Regles de la Méthode Sociologique," Paris 14 ed. 1960, 65–72, 1894. J. Eck, Police problems: The complexity of problem theory, research and evaluation, in "Problem-Oriented Policing: From Innovation to Manistream" (ed. Johannes Knutsson), Crime prevention studies, vol. 15, Criminal Justice Press, Monsey, New York, 2003. M. Felson, "Crime and Nature," Sage Publications Inc., 2006. L. E. Cohen and M. Felson, Social change and crime rate trends: A routine activity approach, American Sociological Review, 44 (1979), 588–608. C. Lewis (ed.), "Modelling Crime and Offending: Recent Developments in England and Wales," Occasional paper no. 80, 2003. S. Kanazawa and M. C. Still, Why men commit crimes (and why they desist), Sociological Theory, 18 (2000), 434–447. J. C. Nuño, M. A. Herrero and M. Primicerio, A triangle model of criminality, Physica A, 387 (2008), 2926–2936. K. Pease, Science in the service of crime reduction, in "Handbook of Crime and Community Safety" (ed. Nick Telley), Willan Publishing Ltd., 2005. L. J. Peter and R. Hull, "The Peter Principle. Why Things Always Go Wrong," William Morrow & Co, New York, 1969. A. Quetelet, "Sur L'homme et le Developpement de ses Facultes, ou Essai de Physique Sociale," Bachelier, Paris, 1835. L. Real, The kinetics of functional response, American Naturalist, 111 (1977), 289–300. S. Pierazzini, Effect of crimes on a socially structured population, preprint, to be published. J. E. Strassmann, Rank crime and punishment, Nature, 432 (2004), 160–161. L. G. Vargo, A note on crime control, Bull. Math. Biophys., 28 (1966), 375–378. H. Zhao, F. Zhilan and C. Castillo-Chavez, The dynamics of poverty and crime, MTBI-02–08M, 2002. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1