Software de planificación de aplicaciones para GPUS reconfigurables
Loading...
Official URL
Full text at PDC
Publication date
2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
En este Trabajo de Fin de Grado se ha desarrollado un simulador de ejecución de tareas en GPUs con soporte de particionado mediante la tecnología Multi-Instance GPU (MIG) de NVIDIA. El objetivo principal ha sido estudiar cómo diferentes políticas de planificación afectan al rendimiento y a la utilización de los recursos en entornos compartidos, centrándose en modelos como la A30 y la A100.
El simulador implementa particiones válidas de la GPU, tiempos de ejecución dependientes del número de slices y mecanismos de reconfiguración dinámica de instancias, lo que permite aproximarse de forma realista al comportamiento de MIG en escenarios prácticos. Sobre esta base se han comparado distintas políticas de planificación, desde enfoques clásicos como FIFO y SJF hasta la propuesta de unanueva heurística, denominada FAR, que busca un compromiso entre el aprovechamiento de los recursos y la eficiencia temporal.
This Bachelor’s Thesis presents the development of a simulator for task execution in GPUs supporting partitioning through NVIDIA’s Multi-Instance GPU (MIG) technology. The main objective has been to study how different scheduling policies affect performance and resource utilization in shared environments, focusing on models such as the A30 and A100. The simulator implements valid GPU partitions, execution times dependent on the number of slices, and mechanisms for dynamic reconfiguration of instances, thus providing a realistic approximation of MIG behavior in practical scenarios. Based on this framework, several scheduling policies have been compared, ranging from classical approaches such as FIFO and SJF to a novel heuristic, referred to as FAR, designed to balance resource utilization and time efficiency.
This Bachelor’s Thesis presents the development of a simulator for task execution in GPUs supporting partitioning through NVIDIA’s Multi-Instance GPU (MIG) technology. The main objective has been to study how different scheduling policies affect performance and resource utilization in shared environments, focusing on models such as the A30 and A100. The simulator implements valid GPU partitions, execution times dependent on the number of slices, and mechanisms for dynamic reconfiguration of instances, thus providing a realistic approximation of MIG behavior in practical scenarios. Based on this framework, several scheduling policies have been compared, ranging from classical approaches such as FIFO and SJF to a novel heuristic, referred to as FAR, designed to balance resource utilization and time efficiency.
Description
Trabajo de Fin de Grado en Ingeniería de Computadores, Facultad Informática UCM, Departamento de Arquitectura de Computadores y Automática, Curso 2024/2025