Synthesis and in-depth interfacial characterization of 2D electron gases formed in Si3N4/Al//KTaO3 heterostructures

dc.contributor.authorMartínez, Emanuel Alberto
dc.contributor.authorLucero, Andrea
dc.contributor.authorCantero, Esteban
dc.contributor.authorBiskup Zaja, Nevenko
dc.contributor.authorOrte, A.
dc.contributor.authorSánchez, Esteban Alejandro
dc.contributor.authorRomera Rabasa, Miguel Álvaro
dc.contributor.authorNemes, Norbert Marcel
dc.contributor.authorMartínez, José Luis
dc.contributor.authorVarela Del Arco, María
dc.contributor.authorGrizzi, Oscar
dc.contributor.authorBruno, Flavio Yair
dc.date.accessioned2025-02-04T16:11:49Z
dc.date.available2025-02-04T16:11:49Z
dc.date.issued2025
dc.descriptionThis work has been supported by: Comunidad de Madrid (Atraccion ´ de Talento grant No. 2022-5A/IND-24230 and MAD2D-CM-UCM3), grant CNS2022-135485 funded by MCIN/AEI/ 10.13039/ 501100011033 and European Union NextGeneration EU/PRTR, grant from MICINN FEDER PID2021-122980OB-C51, TED2021-129254B-C21 and TED2021-129254B-C22, grants 06/C025-T1 funded by Universidad Nacional de Cuyo, and PIP 11220210100411CO founded by CONICET. E.A.M. acknowledges funding from the European Union (NextGenerationEU), under the Italian Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP) grant - TOTEM - CUP E53D23001710006. STEM-EELS measurements carried out at ICTS ELECMI (CNME node, Madrid).
dc.description.abstractThe two-dimensional electron gas (2DEG) found in KTaO3-based interfaces has garnered attention due to its remarkable electronic properties. In this study, we investigated the conducting system embedded at the Si3N4/Al//KTO(110) heterostructure. We demonstrate that the Al/KTO interface supports a conducting system, with the Si3N4 passivation layer acting as a barrier to oxygen diffusion, enabling ex-situ characterization. Our findings reveal that the mobility and carrier density of the system can be tuned by varying the Al layer thickness. Using scanning transmission electron microscopy, electron energy-loss spectroscopy, X-ray photoemission spectroscopy, and time-of-flight secondary ion mass spectrometry, we characterized the structural and chemical composition of the interface. We found that the Al layer fully oxidizes into AlOx, drawing oxygen from the KTaO3 substrate. The oxygen depletion zone extends 3–5 nm into the substrate and correlates to the Al thickness. Heterostructures with thicker Al layers exhibit higher carrier densities but lower mobilities, likely due to interactions with the oxygen vacancies that act as scattering centers. These findings highlight the importance of considering the effect and extent of the oxygen depletion zone when designing and modeling two-dimensional electron systems in complex oxides.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipUniversidad Nacional de Cuyo
dc.description.sponsorshipConsejo Nacional de Investigaciones Científicas y Técnicas (Argentina)
dc.description.sponsorshipMinistero dell'Università e della Ricerca (Italia)
dc.description.statuspub
dc.identifier.citationE. A. Martínez, A.M. Lucero, E.D. Cantero, N. Biskup, A. Orte, E.A. Sánchez, M. Romera, N.M. Nemes, J.L. Martínez, M. Varela, O. Grizzi and F. Y. Bruno, Appl. Surf. Sci. 689, 162499 (2025)
dc.identifier.doi10.1016/j.apsusc.2025.162499
dc.identifier.essn1873-5584
dc.identifier.issn0169-4332
dc.identifier.officialurlhttps://doi.org/10.1016/j.apsusc.2025.162499
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0169433225002120
dc.identifier.relatedurlhttps://arxiv.org/abs/2409.11893
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117802
dc.journal.titleApplied Surface Science
dc.language.isoeng
dc.page.final162499-16
dc.page.initial162499-1
dc.publisherElsevier
dc.relation.projectID2022-5A/IND-24230
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN%AEI//CNS202 2 -135485
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//PID2021-122980OB-C51
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/TED2021-129254-B-C21
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/TED2021-129254B-C22
dc.relation.projectIDPIP 11220210100411CO
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordKTaO3
dc.subject.keywordTwo dimensional electron gas
dc.subject.keyword2DEG
dc.subject.keywordTOF-SIMS
dc.subject.keywordOxygen vacancies
dc.subject.keywordMobility
dc.subject.ucmFísica del estado sólido
dc.subject.ucmFísica de materiales
dc.subject.unesco2211 Física del Estado Sólido
dc.titleSynthesis and in-depth interfacial characterization of 2D electron gases formed in Si3N4/Al//KTaO3 heterostructures
dc.typejournal article
dc.type.hasVersionAO
dc.volume.number689
dspace.entity.typePublication
relation.isAuthorOfPublication671e957a-9daa-4bd5-9876-eee854146782
relation.isAuthorOfPublication51631258-afb5-4b81-85dd-8dae6ac09259
relation.isAuthorOfPublication697f3953-540b-435a-afc9-ec307315d667
relation.isAuthorOfPublication671e957a-9daa-4bd5-9876-eee854146782
relation.isAuthorOfPublication63e453a5-31af-4eeb-9a5f-21c2edbbb733
relation.isAuthorOfPublication02b59ca8-7ad4-435f-bfd1-a4ac8425afd8
relation.isAuthorOfPublication.latestForDiscovery671e957a-9daa-4bd5-9876-eee854146782

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Synthesis_Ver_Publicada.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format

Collections