Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorGrandati, Yves
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-19T14:54:29Z
dc.date.available2023-06-19T14:54:29Z
dc.date.issued2014-01-10
dc.description© IOP Publishing Ltd. The research of the first author (DGU) has been supported in part by Spanish MINECO-FEDER grants MTM2009-06973, MTM2012-31714, and the Catalan grant 2009SGR-859. The research of the third author (RM) was supported in part by NSERC grant RGPIN-228057-2009.
dc.description.abstractWe prove that every rational extension of the quantum harmonic oscillator that is exactly solvable by polynomials is monodromy free, and therefore can be obtained by applying a finite number of state-deleting Darboux transformations on the harmonic oscillator. Equivalently, every exceptional orthogonal polynomial system of Hermite type can be obtained by applying a Darboux-Crum transformation to the classical Hermite polynomials. Exceptional Hermite polynomial systems only exist for even codimension 2m, and they are indexed by the partitions λ of m. We provide explicit expressions for their corresponding orthogonality weights and differential operators and a separate proof of their completeness. Exceptional Hermite polynomials satisfy a 2l + 3 recurrence relation where l is the length of the partition λ. Explicit expressions for such recurrence relations are given.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MINECO-FEDER
dc.description.sponsorshipCatalan
dc.description.sponsorshipNSER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30746
dc.identifier.doi10.1088/1751-8113/47/1/015203
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1751-8113/47/1/015203
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/1306.5143
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34707
dc.issue.number1
dc.journal.titleJournal of physics A: Mathematical and theoretical
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDMTM2009-06973
dc.relation.projectIDMTM2012-31714
dc.relation.projectID2009SGR-859
dc.relation.projectIDRGPIN-228057-2009
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordShape-invariant potentials
dc.subject.keywordQuasi-exact solvability
dc.subject.keywordOrthogonal polynomials
dc.subject.keywordDarboux transformations
dc.subject.keywordLaguerre-polynomials
dc.subject.keywordMechanics
dc.subject.keywordEquation
dc.subject.keywordFormula
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleRational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials
dc.typejournal article
dc.volume.number47
dcterms.references[1] J.J. Duistermaat and F.A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys., 103(2):177–240, 1986. [2] A.A. Oblomkov, Monodromy-free schrodinger operators with quadratically increasing potentials, Theor. Math. Phys., 121(3):1574–1584, 1999. [3] L. Infeld and Te. Hull, The factorization method, Rev. Mod. Phys., 23(1):21–68, 1951. [4] P. A. Deift, Applications of a commutation formula, Duke Math. J. 45:267–310, 1978. [5] C.V. Sukumar, Supersymmetric quantum- mechanics and the inverse scattering method, J. Phys. A - Math. Gen., 18(15):2937–2955, 1985. [6] B. Mielnik, Factorization method and new potentials with the oscillator spectrum, J. Math. Phys., 25(12):3387–3389, 1984. [7] V.G. Bagrov and B.F. Samsonov, Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics, Theor. Math. Phys., 104(2):1051–1060, 1995. [8] D. Gómez-Ullate, N. Kamran, and R. Milson, Supersymmetry and algebraic Darboux transformations, J. Phys. A - Math. Gen., 37(43):10065–10078, 2004. [9] D. Gómez-Ullate, N. Kamran, and R. Milson, The Darboux transformation and algebraic deformations of shapeinvariant potentials, J. Phys. A - Math. Gen., 37(5):1789–1804, 2004. [10] Y. Grandati, Solvable rational extensions of the isotonic oscillator, Ann. Phys., 326(8):2074–2090, 2011. [11] Y. Grandati and A. Berard, Rational solutions for the Riccati-Schr¨odinger equations associated to translationally shape invariant potentials, Ann. Phys., 325(6):1235–1259, 2010. [12] Y. Grandati, Solvable rational extensions of the morse and Kepler-Coulomb potentials, J. Math. Phys., 52(10), 2011. [13] Y. Grandati and A. Berard, Solvable rational extension of translationally shape invariant potentials, Contemp. Math. 563:15–125, 2012. [14] I. Marquette and C. Quesne, Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators, J. Phys. A - Math. Theor., 46(15), 2013. [15] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: Exceptional invariant subspaces, J. Approx. Theory, 162(5):987– 1006, 2010. [16] D. Gómez-Ullate, N. Kamran, and R. Milson, An extended class of orthogonal polynomials defined by a SturmLiouville problem, J. Math. Anal. Appl., 359(1):352–367, 2009. [17] S. Bochner, On Sturm-Liouville polynomial systems, Math. Z., 29:730–736, 1929. [18] D. Gómez-Ullate, N. Kamran, and R. Milson, Quasi-exact solvability and the direct approach to invariant subspaces, J. Phys. A - Math. Gen., 38(9):2005–2019, 2005. [19] D. Gómez-Ullate, N. Kamran, and R. Milson, Quasi-exact solvability in a general polynomial setting, Inverse Problems, 23(5):1915–1942, 2007. [20] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and Supersymmetry, J. Phys. A - Math. Theor., 41(39), 2008. [21] C. Quesne. Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics, SIGMA, 5, 2009. [22] S. Odake and R. Sasaki, Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B, 679(4):414–417, 2009. [23] S. Odake and R. Sasaki, Another set of infinitely many exceptional (X-l) Laguerre polynomials, Phys. Lett. B, 684(2-3):173–176, 2010. [24] D. Gómez-Ullate, N. Kamran, and R. Milson, Exceptional orthogonal polynomials and the Darboux transformation, J. Phys. A - Math. Theor., 43(43), 2010. [25] R. Sasaki, S. Tsujimoto, and A. Zhedanov. Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux- Crum transformations, J. Phys. A - Math. Theor., 43(31), 2010. [26] D. Gómez-Ullate, N. Kamran, and R. Milson, On orthogonal polynomials spanning a non-standard flag, Contemp. Math. 563:51–71, 2012. [27] M.M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2), 6:121–127, 1955. [28] D. Gómez-Ullate, N. Kamran, and R. Milson, Two-step Darboux transformations and Exceptional Laguerre polynomials. J. Math. Anal. Appl., 387(1):410–418, 2012. [29] S. Odake and R. Sasaki, Exactly solvable quantum mechanics and infinite families of multi- indexed orthogonal polynomials, Phys. Lett. B, 702(2-3):164–170, 2011. [30] C. Quesne, Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials, Mod. Phys. Lett. A, 26(25):1843–1852, 2011. [31] I. Marquette and C. Quesne, New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials, J. Math. Phys., 54:042102, 2013. [32] S. Post, S. Tsujimoto, and L. Vinet, Families of superintegrable hamiltonians constructed from exceptional polynomials, J. Phys. A - Math. Theor., 45(40), 2012. [33] C.-L. Ho, Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials, Ann. Phys., 326(4):797– 807, 2011. [34] D. Dutta and P. Roy, Information entropy of conditionally exactly solvable potentials, J. Math. Phys., 52(3), 2011. [35] B. Midya and B. Roy, Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schrödinger Hamiltonians, Phys. Lett. A 373(45):4117–4122, 2009. [36] S. Odake and R. Sasaki, Discrete quantum mechanics, J. Phys. A - Math. Theor., 44(35), 2011. [37] D. Gómez-Ullate, F. Marcellan, and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399(2):480–495, 2013. [38] G. Szegó, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, American Mathematical Society, Providence, Rhode Island 1975. Fourth Edition. [39] S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials, ArXiv:1303.5820 [math-ph]. [40] D. Gómez-Ullate, N. Kamran, and R. Milson, A conjecture on exceptional orthogonal polynomials, Found. Comput. Math. 2012, DOI 10.1007/s10208-012-9128-6 [41] S. Dubov, V.M. Eleonskii, and N.E. Kulagin, Equidistant spectra of anharmonic oscillators, Soviet Physics, JETP, 75(3):446–451, 1992. [42] G. Junker and P. Roy, Conditionally exactly solvable problems and non-linear algebras, Phys. Lett. A, 232(3):155– 161, 1997. [43] J.F. Carinena, A.M. Perelomov, M.F. Ranada, and M. Santander, A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator, J. Phys. A: Math. Theor., 41(8):085301, 2008. [44] J.M. Fellows and R.A. Smith, Factorization solution of a family of quantum nonlinear oscillators, J. Phys. A: Math. Theor., 42(33):335303, 2009. [45] D. Dutta and P. Roy, Conditionally exactly solvable potentials and exceptional orthogonal polynomials, J. Math. Phys. 51:042101, 2010. [46] P.A. Clarkson, The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (2003), 5350– 5374. [47] G. Felder, A.D. Hemery, and A.P. Veselov, Zeros of Wronskians of Hermite polynomials and Young diagrams, Physica D, 241(23-24):2131–2137, 2012. [48] P.A. Clarkson, On rational solutions of the fourth Painlevé equation and its Hamiltonian, CRM Proc. Lect. Notes 39 (2005) 103–118. [49] M.G. Krein, A continual analogue of a Christoffel formula from the theory of orthogonal polynomials, Dokl. Akad. Nauk. SSSR, 113(5):970–973, 1957. [50] V.E. Adler, A modification of Crum’s method, Theor. Math. Phys., 101(3):1381–1386, 1994. [51] S. Odake and R. Sasaki, Krein-Adler transformations for shape-invariant potentials and pseudo virtual states, ArXiv:1212.6595 [math-ph]. [52] D. Gómez-Ullate, Y. Grandati, and R. Milson, Extended Krein-Adler theorem for the translationally shape invariant potentials, In preparation.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate04preprint.pdf
Size:
304.08 KB
Format:
Adobe Portable Document Format

Collections