Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials
dc.contributor.author | Gómez-Ullate Otaiza, David | |
dc.contributor.author | Grandati, Yves | |
dc.contributor.author | Milson, Robert | |
dc.date.accessioned | 2023-06-19T14:54:29Z | |
dc.date.available | 2023-06-19T14:54:29Z | |
dc.date.issued | 2014-01-10 | |
dc.description | © IOP Publishing Ltd. The research of the first author (DGU) has been supported in part by Spanish MINECO-FEDER grants MTM2009-06973, MTM2012-31714, and the Catalan grant 2009SGR-859. The research of the third author (RM) was supported in part by NSERC grant RGPIN-228057-2009. | |
dc.description.abstract | We prove that every rational extension of the quantum harmonic oscillator that is exactly solvable by polynomials is monodromy free, and therefore can be obtained by applying a finite number of state-deleting Darboux transformations on the harmonic oscillator. Equivalently, every exceptional orthogonal polynomial system of Hermite type can be obtained by applying a Darboux-Crum transformation to the classical Hermite polynomials. Exceptional Hermite polynomial systems only exist for even codimension 2m, and they are indexed by the partitions λ of m. We provide explicit expressions for their corresponding orthogonality weights and differential operators and a separate proof of their completeness. Exceptional Hermite polynomials satisfy a 2l + 3 recurrence relation where l is the length of the partition λ. Explicit expressions for such recurrence relations are given. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish MINECO-FEDER | |
dc.description.sponsorship | Catalan | |
dc.description.sponsorship | NSER | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30746 | |
dc.identifier.doi | 10.1088/1751-8113/47/1/015203 | |
dc.identifier.issn | 1751-8113 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/1751-8113/47/1/015203 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/1306.5143 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34707 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of physics A: Mathematical and theoretical | |
dc.language.iso | eng | |
dc.publisher | IOP Publishing Ltd | |
dc.relation.projectID | MTM2009-06973 | |
dc.relation.projectID | MTM2012-31714 | |
dc.relation.projectID | 2009SGR-859 | |
dc.relation.projectID | RGPIN-228057-2009 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Shape-invariant potentials | |
dc.subject.keyword | Quasi-exact solvability | |
dc.subject.keyword | Orthogonal polynomials | |
dc.subject.keyword | Darboux transformations | |
dc.subject.keyword | Laguerre-polynomials | |
dc.subject.keyword | Mechanics | |
dc.subject.keyword | Equation | |
dc.subject.keyword | Formula | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials | |
dc.type | journal article | |
dc.volume.number | 47 | |
dcterms.references | [1] J.J. Duistermaat and F.A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys., 103(2):177–240, 1986. [2] A.A. Oblomkov, Monodromy-free schrodinger operators with quadratically increasing potentials, Theor. Math. Phys., 121(3):1574–1584, 1999. [3] L. Infeld and Te. Hull, The factorization method, Rev. Mod. Phys., 23(1):21–68, 1951. [4] P. A. Deift, Applications of a commutation formula, Duke Math. J. 45:267–310, 1978. [5] C.V. Sukumar, Supersymmetric quantum- mechanics and the inverse scattering method, J. Phys. A - Math. Gen., 18(15):2937–2955, 1985. [6] B. Mielnik, Factorization method and new potentials with the oscillator spectrum, J. Math. Phys., 25(12):3387–3389, 1984. [7] V.G. Bagrov and B.F. Samsonov, Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics, Theor. Math. Phys., 104(2):1051–1060, 1995. [8] D. Gómez-Ullate, N. Kamran, and R. Milson, Supersymmetry and algebraic Darboux transformations, J. Phys. A - Math. Gen., 37(43):10065–10078, 2004. [9] D. Gómez-Ullate, N. Kamran, and R. Milson, The Darboux transformation and algebraic deformations of shapeinvariant potentials, J. Phys. A - Math. Gen., 37(5):1789–1804, 2004. [10] Y. Grandati, Solvable rational extensions of the isotonic oscillator, Ann. Phys., 326(8):2074–2090, 2011. [11] Y. Grandati and A. Berard, Rational solutions for the Riccati-Schr¨odinger equations associated to translationally shape invariant potentials, Ann. Phys., 325(6):1235–1259, 2010. [12] Y. Grandati, Solvable rational extensions of the morse and Kepler-Coulomb potentials, J. Math. Phys., 52(10), 2011. [13] Y. Grandati and A. Berard, Solvable rational extension of translationally shape invariant potentials, Contemp. Math. 563:15–125, 2012. [14] I. Marquette and C. Quesne, Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators, J. Phys. A - Math. Theor., 46(15), 2013. [15] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: Exceptional invariant subspaces, J. Approx. Theory, 162(5):987– 1006, 2010. [16] D. Gómez-Ullate, N. Kamran, and R. Milson, An extended class of orthogonal polynomials defined by a SturmLiouville problem, J. Math. Anal. Appl., 359(1):352–367, 2009. [17] S. Bochner, On Sturm-Liouville polynomial systems, Math. Z., 29:730–736, 1929. [18] D. Gómez-Ullate, N. Kamran, and R. Milson, Quasi-exact solvability and the direct approach to invariant subspaces, J. Phys. A - Math. Gen., 38(9):2005–2019, 2005. [19] D. Gómez-Ullate, N. Kamran, and R. Milson, Quasi-exact solvability in a general polynomial setting, Inverse Problems, 23(5):1915–1942, 2007. [20] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and Supersymmetry, J. Phys. A - Math. Theor., 41(39), 2008. [21] C. Quesne. Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics, SIGMA, 5, 2009. [22] S. Odake and R. Sasaki, Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B, 679(4):414–417, 2009. [23] S. Odake and R. Sasaki, Another set of infinitely many exceptional (X-l) Laguerre polynomials, Phys. Lett. B, 684(2-3):173–176, 2010. [24] D. Gómez-Ullate, N. Kamran, and R. Milson, Exceptional orthogonal polynomials and the Darboux transformation, J. Phys. A - Math. Theor., 43(43), 2010. [25] R. Sasaki, S. Tsujimoto, and A. Zhedanov. Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux- Crum transformations, J. Phys. A - Math. Theor., 43(31), 2010. [26] D. Gómez-Ullate, N. Kamran, and R. Milson, On orthogonal polynomials spanning a non-standard flag, Contemp. Math. 563:51–71, 2012. [27] M.M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2), 6:121–127, 1955. [28] D. Gómez-Ullate, N. Kamran, and R. Milson, Two-step Darboux transformations and Exceptional Laguerre polynomials. J. Math. Anal. Appl., 387(1):410–418, 2012. [29] S. Odake and R. Sasaki, Exactly solvable quantum mechanics and infinite families of multi- indexed orthogonal polynomials, Phys. Lett. B, 702(2-3):164–170, 2011. [30] C. Quesne, Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials, Mod. Phys. Lett. A, 26(25):1843–1852, 2011. [31] I. Marquette and C. Quesne, New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials, J. Math. Phys., 54:042102, 2013. [32] S. Post, S. Tsujimoto, and L. Vinet, Families of superintegrable hamiltonians constructed from exceptional polynomials, J. Phys. A - Math. Theor., 45(40), 2012. [33] C.-L. Ho, Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials, Ann. Phys., 326(4):797– 807, 2011. [34] D. Dutta and P. Roy, Information entropy of conditionally exactly solvable potentials, J. Math. Phys., 52(3), 2011. [35] B. Midya and B. Roy, Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schrödinger Hamiltonians, Phys. Lett. A 373(45):4117–4122, 2009. [36] S. Odake and R. Sasaki, Discrete quantum mechanics, J. Phys. A - Math. Theor., 44(35), 2011. [37] D. Gómez-Ullate, F. Marcellan, and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399(2):480–495, 2013. [38] G. Szegó, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, American Mathematical Society, Providence, Rhode Island 1975. Fourth Edition. [39] S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials, ArXiv:1303.5820 [math-ph]. [40] D. Gómez-Ullate, N. Kamran, and R. Milson, A conjecture on exceptional orthogonal polynomials, Found. Comput. Math. 2012, DOI 10.1007/s10208-012-9128-6 [41] S. Dubov, V.M. Eleonskii, and N.E. Kulagin, Equidistant spectra of anharmonic oscillators, Soviet Physics, JETP, 75(3):446–451, 1992. [42] G. Junker and P. Roy, Conditionally exactly solvable problems and non-linear algebras, Phys. Lett. A, 232(3):155– 161, 1997. [43] J.F. Carinena, A.M. Perelomov, M.F. Ranada, and M. Santander, A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator, J. Phys. A: Math. Theor., 41(8):085301, 2008. [44] J.M. Fellows and R.A. Smith, Factorization solution of a family of quantum nonlinear oscillators, J. Phys. A: Math. Theor., 42(33):335303, 2009. [45] D. Dutta and P. Roy, Conditionally exactly solvable potentials and exceptional orthogonal polynomials, J. Math. Phys. 51:042101, 2010. [46] P.A. Clarkson, The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (2003), 5350– 5374. [47] G. Felder, A.D. Hemery, and A.P. Veselov, Zeros of Wronskians of Hermite polynomials and Young diagrams, Physica D, 241(23-24):2131–2137, 2012. [48] P.A. Clarkson, On rational solutions of the fourth Painlevé equation and its Hamiltonian, CRM Proc. Lect. Notes 39 (2005) 103–118. [49] M.G. Krein, A continual analogue of a Christoffel formula from the theory of orthogonal polynomials, Dokl. Akad. Nauk. SSSR, 113(5):970–973, 1957. [50] V.E. Adler, A modification of Crum’s method, Theor. Math. Phys., 101(3):1381–1386, 1994. [51] S. Odake and R. Sasaki, Krein-Adler transformations for shape-invariant potentials and pseudo virtual states, ArXiv:1212.6595 [math-ph]. [52] D. Gómez-Ullate, Y. Grandati, and R. Milson, Extended Krein-Adler theorem for the translationally shape invariant potentials, In preparation. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gomez-ullate04preprint.pdf
- Size:
- 304.08 KB
- Format:
- Adobe Portable Document Format