Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity

dc.contributor.authorBègout, Pascal
dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.date.accessioned2023-06-19T13:31:56Z
dc.date.available2023-06-19T13:31:56Z
dc.date.issued2014
dc.description.abstractWe prove the compactness of the support of the solution of some stationary Schrödinger equations with a singular nonlinear order term. We present here a sharper version of some energy methods previously used in the literature
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipDGISPI, Spain
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29394
dc.identifier.doihttp://dx.10.3934/dcds.2014.34.3371
dc.identifier.issn1078-0947
dc.identifier.officialurlhttps://www.aimsciences.org/journals/pdfs.jsp?paperID=9754&mode=full
dc.identifier.relatedurlhttps://www.aimsciences.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33952
dc.issue.number9
dc.journal.titleDiscrete and Continuous Dynamical Systems. Series A.
dc.language.isoeng
dc.page.final3382
dc.page.initial3371
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.projectIDFIRST (238702)
dc.relation.projectIDMTM2011-26119
dc.relation.projectIDGrupo MOMAT (910480)
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordEnergy method
dc.subject.keywordSchödinger equation
dc.subject.keywordsolutions with compact support
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity
dc.typejournal article
dc.volume.number34
dcterms.referencesS. N. Antontsev, J. I. Díaz, and S. Shmarev, Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics, Progress in Nonlinear Differential Equations and their Applications, 48.Birkhäuser Boston Inc., Boston, MA, 2002. P. Bégout and J. I. Díaz, Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity, Accepted for publication in RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.,&arXiv:1304.3389. P. Bégout and J. I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations, Submitted,& arXiv:1301.0715. P. Bégout and J. I. Díaz, On a nonlinear Schrödinger equation with a localizing effect, C. R. Math. Acad. Sci. Paris, 342 (2006), 459–463. P. Bégout and J. I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations — The stationary case, Ann. Inst. H. Poincar´e Anal. Non Lineaire, 29 (2012), 35–58. T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, 2003.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A191_DCDS-A.pdf
Size:
380.91 KB
Format:
Adobe Portable Document Format

Collections