Analyzing employee attrition using explainable AI for strategic HR decision-making

dc.contributor.authorMarín Díaz, Gabriel
dc.contributor.authorGalán Hernández, José Javier
dc.contributor.authorGaldón Salvador, José Luis
dc.date.accessioned2026-01-11T19:34:46Z
dc.date.available2026-01-11T19:34:46Z
dc.date.issued2023-11-17
dc.descriptionPublicly accessible datasets were utilized for the analysis in this study. The data source can be accessed via the following link: https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset
dc.description.abstractEmployee attrition and high turnover have become critical challenges across multiple sectors in today’s competitive job market. In response to these issues, organizations increasingly rely on artificial intelligence (AI) to predict employee attrition and design effective retention strategies. This paper explores the application of explainable AI (XAI) to identify potential turnover risks and propose data-driven solutions to address this complex problem. The first section examines the growing impact of employee attrition in specific industries, highlighting its negative consequences for organizational productivity, morale, and financial stability. The second section focuses on AI techniques used to forecast the likelihood of employee departure by analyzing historical data, behavioral patterns, and external factors. Early detection of risk indicators enables proactive and personalized retention interventions. The third section introduces explainable AI approaches that enhance the transparency and interpretability of AI-based predictive models. By integrating XAI into predictive systems, organizations gain deeper insight into the factors driving employee turnover. This interpretability supports human resources (HR) professionals and decision-makers in understanding model outputs and developing targeted retention and recruitment strategies aligned with individual employee needs.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipSIN FINANCIACIÓN
dc.description.statuspub
dc.identifier.citationMarín Díaz G, Galán Hernández JJ, Galdón Salvador JL. Analyzing employee attrition using explainable AI for strategic HR decision-making. Mathematics. 2023;11(22):4677. doi:10.3390/math11224677
dc.identifier.doi10.3390/math11224677
dc.identifier.issn2227-7390
dc.identifier.officialurlhttps://doi.org/10.3390/math11224677
dc.identifier.relatedurlhttps://www.mdpi.com/2227-7390/11/22/4677
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129821
dc.issue.number22
dc.journal.titleMathematics
dc.language.isoeng
dc.publisherMDPI
dc.rights.accessRightsopen access
dc.subject.cdu519.2
dc.subject.cdu004.85
dc.subject.cdu658
dc.subject.cdu658.3
dc.subject.jelC55 (Machine Learning / IA aplicados)
dc.subject.jelJ63 (Labor Turnover)
dc.subject.jelM51 (HRM / Hiring / Staffing)
dc.subject.keywordXAI
dc.subject.keywordInterpretability
dc.subject.keywordDecision-making
dc.subject.keywordEmployee attrition
dc.subject.keywordMachine learning
dc.subject.keywordHuman resources
dc.subject.ucmEstadística
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmAdministración de empresas
dc.subject.unesco1209 Estadística
dc.subject.unesco53 Ciencias Económicas
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5311.04 Organización de Recursos Humanos
dc.titleAnalyzing employee attrition using explainable AI for strategic HR decision-making
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationdbf934cd-7a5b-4052-a128-5c68bf7d8b7e
relation.isAuthorOfPublicationf11206d7-9926-4f84-a47e-776cd56cea85
relation.isAuthorOfPublication.latestForDiscoverydbf934cd-7a5b-4052-a128-5c68bf7d8b7e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-11-04677.pdf
Size:
6 MB
Format:
Adobe Portable Document Format

Collections