Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Universal 2-bridge knot and link orbifolds

Loading...
Thumbnail Image

Full text at PDC

Publication date

1993

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific PublCo
Citations
Google Scholar

Citation

Abstract

Let (L,n) be the orbifold with singular set a nontoroidal 2-bridge knot or link L in S3, with cyclic isotropy group of order n. The authors show that the orbifold fundamental group Γ=π1(L,12n) is universal: Γ is isomorphic to a discrete group of isometries of the hyperbolic 3-space H3, and any closed oriented 3-manifold is homeomorphic to H3/G for some subgroup of finite index G of Γ. They show that the Borromean link in S3 is a sublink of the preimage of the singular set of a branched cover over L, with branching indices dividing 12. Since they had proved in an earlier paper that the orbifold with singular set the Borromean link and cyclic isotropy groups of orders 4,4,4 is universal, the result follows. In particular, if L is the figure eight knot, then π1(L,12) is both universal and arithmetic.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections