Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The set of periods of chaotic operators and semigroups

dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.contributor.authorWeber, Andreas
dc.date.accessioned2023-06-20T00:18:15Z
dc.date.available2023-06-20T00:18:15Z
dc.date.issued2011
dc.description.abstractThis expository paper is devoted to the review of some very recent results concerning the set of periods of a chaotic operator T or a chaotic semigroup {T (t): t a parts per thousand yen 0} acting on a complex Banach space. We obtain information about the structure of the set of periods and we give techniques to construct (chaotic) strongly continuous semigroups with prescribed periods.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16894
dc.identifier.doi10.1080/03081087.2011.613833
dc.identifier.issn1578-7303
dc.identifier.officialurlhttp://www.springerlink.com/content/g512831qv5028833/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42361
dc.issue.number2
dc.journal.titleRevista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A: Matemáticas
dc.page.final402
dc.page.initial397
dc.publisherSpringer
dc.relation.projectIDMTM2009-07848
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.98
dc.subject.keywordPeriods of strongly continuous semigroups
dc.subject.keywordHypercyclic semigroups
dc.subject.keywordChaotic semigroups
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleThe set of periods of chaotic operators and semigroups
dc.typejournal article
dc.volume.number105
dcterms.referencesAli Akbar, K., Kannan, V., Gopal, S., Chiranjeevi, P.: The set of periods of periodic points of a linear operator. Linear Algebra Appl. 431(1–2), 241–246 (2009) MR2522571 (2010f:47032) Aron, R.M., Seoane-Sep´ulveda, J.B.,Weber, A.: Chaos on function spaces. Bull.Austral. Math. Soc. 71(3), 411–415 (2005) MR2150930 (2006a:47013) Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Amer. Math. Monthly 99(4), 332–334 (1992) MR1157223 (93d:54059) Bayart, F., Berm´udez, T.: Semigroups of chaotic operators. Bull. London Math. Soc. 41(5), 823–830 (2009) MR2557463 (2011a:47024) Bayart, F., Grivaux, S.: Hypercyclicity and unimodular point spectrum. J. Funct. Anal. 226(2), 281–300 (2005) MR2159459 (2006i:47014) Bayart, F., Matheron, ´ E: Dynamics of linear operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009) MR2533318 (2010m:47001) Block, L.S., Coppel, W.A.: Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992) MR1176513 (93g:58091) Conejero, J.A, Martínez-Giménez, F., Peris, A.: Sets of periods for chaotic linear operators (2011) (preprint) DeLaubenfels, R., Emamirad, H.: Chaos for functions of discrete and continuous weighted shift operators. Ergod. Theory Dynam. Syst. 21(5), 1411–1427 (2001) MR1855839 (2002j:47030) Devaney, R.L.: An introduction to chaotic dynamical systems, second ed., In: Addison-Wesley studies in nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989) MR1046376 (91a:58114) Elaydi, S.: On a converse of Sharkovsky’s theorem. Am. Math. Mon. 103(5), 386–392 (1996) MR1400719 (97g:58049) Godefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991) MR1111569 (92d:47029) Grosse-Erdmann, K.-G.: Recent developments in hypercyclicity, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), In: Colecc. Abierta, vol. 64, Univ. Sevilla Secr. Publ., Seville, 2003, pp. 157–175 MR2041336 (2004m:47019) Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators. Bull. Amer. Math. Soc.(N.S.) 36(3), 345–381 (1999) MR1685272 (2000c:47001) Kalish, G.: On operators on separable Banach spaces with arbitrary prescribed point spectrum. Proc. Amer. Math. Soc. 34(1), 207–208 (1972) MR0315474 (47 #4023) Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B., Weber, A.: Periods of strongly continuous semigroups (2010) (preprint) Pazy, A.: Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983) MR0710486 (85g:47061) Sarkovskii, A.N.: Co-existence of cycles of a continuous mapping of a line onto itself. Ukranian Math. Z. 16, 61–71 (1964) MR0159905 (28 #3121) Smolyanov, O.G., Shkarin, S.A.: On the structure of the spectra of linear operators in Banach spaces. Mat. Sb. 192(4), 99–114 (2001) MR1834094 (2002a:47004)
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Collections