The set of periods of chaotic operators and semigroups
dc.contributor.author | Muñoz-Fernández, Gustavo A. | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.contributor.author | Weber, Andreas | |
dc.date.accessioned | 2023-06-20T00:18:15Z | |
dc.date.available | 2023-06-20T00:18:15Z | |
dc.date.issued | 2011 | |
dc.description.abstract | This expository paper is devoted to the review of some very recent results concerning the set of periods of a chaotic operator T or a chaotic semigroup {T (t): t a parts per thousand yen 0} acting on a complex Banach space. We obtain information about the structure of the set of periods and we give techniques to construct (chaotic) strongly continuous semigroups with prescribed periods. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Science and Innovation | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16894 | |
dc.identifier.doi | 10.1080/03081087.2011.613833 | |
dc.identifier.issn | 1578-7303 | |
dc.identifier.officialurl | http://www.springerlink.com/content/g512831qv5028833/ | |
dc.identifier.relatedurl | http://www.springerlink.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42361 | |
dc.issue.number | 2 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A: Matemáticas | |
dc.page.final | 402 | |
dc.page.initial | 397 | |
dc.publisher | Springer | |
dc.relation.projectID | MTM2009-07848 | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Periods of strongly continuous semigroups | |
dc.subject.keyword | Hypercyclic semigroups | |
dc.subject.keyword | Chaotic semigroups | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | The set of periods of chaotic operators and semigroups | |
dc.type | journal article | |
dc.volume.number | 105 | |
dcterms.references | Ali Akbar, K., Kannan, V., Gopal, S., Chiranjeevi, P.: The set of periods of periodic points of a linear operator. Linear Algebra Appl. 431(1–2), 241–246 (2009) MR2522571 (2010f:47032) Aron, R.M., Seoane-Sep´ulveda, J.B.,Weber, A.: Chaos on function spaces. Bull.Austral. Math. Soc. 71(3), 411–415 (2005) MR2150930 (2006a:47013) Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Amer. Math. Monthly 99(4), 332–334 (1992) MR1157223 (93d:54059) Bayart, F., Berm´udez, T.: Semigroups of chaotic operators. Bull. London Math. Soc. 41(5), 823–830 (2009) MR2557463 (2011a:47024) Bayart, F., Grivaux, S.: Hypercyclicity and unimodular point spectrum. J. Funct. Anal. 226(2), 281–300 (2005) MR2159459 (2006i:47014) Bayart, F., Matheron, ´ E: Dynamics of linear operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009) MR2533318 (2010m:47001) Block, L.S., Coppel, W.A.: Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992) MR1176513 (93g:58091) Conejero, J.A, Martínez-Giménez, F., Peris, A.: Sets of periods for chaotic linear operators (2011) (preprint) DeLaubenfels, R., Emamirad, H.: Chaos for functions of discrete and continuous weighted shift operators. Ergod. Theory Dynam. Syst. 21(5), 1411–1427 (2001) MR1855839 (2002j:47030) Devaney, R.L.: An introduction to chaotic dynamical systems, second ed., In: Addison-Wesley studies in nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989) MR1046376 (91a:58114) Elaydi, S.: On a converse of Sharkovsky’s theorem. Am. Math. Mon. 103(5), 386–392 (1996) MR1400719 (97g:58049) Godefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991) MR1111569 (92d:47029) Grosse-Erdmann, K.-G.: Recent developments in hypercyclicity, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), In: Colecc. Abierta, vol. 64, Univ. Sevilla Secr. Publ., Seville, 2003, pp. 157–175 MR2041336 (2004m:47019) Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators. Bull. Amer. Math. Soc.(N.S.) 36(3), 345–381 (1999) MR1685272 (2000c:47001) Kalish, G.: On operators on separable Banach spaces with arbitrary prescribed point spectrum. Proc. Amer. Math. Soc. 34(1), 207–208 (1972) MR0315474 (47 #4023) Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B., Weber, A.: Periods of strongly continuous semigroups (2010) (preprint) Pazy, A.: Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983) MR0710486 (85g:47061) Sarkovskii, A.N.: Co-existence of cycles of a continuous mapping of a line onto itself. Ukranian Math. Z. 16, 61–71 (1964) MR0159905 (28 #3121) Smolyanov, O.G., Shkarin, S.A.: On the structure of the spectra of linear operators in Banach spaces. Mat. Sb. 192(4), 99–114 (2001) MR1834094 (2002a:47004) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | e85d6b14-0191-4b04-b29b-9589f34ba898 |