Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The present-day thermal state of Mars

dc.contributor.authorRuiz Pérez, Javier
dc.contributor.authorLópez, Valle
dc.contributor.authorDohm, James M.
dc.date.accessioned2023-06-20T00:02:02Z
dc.date.available2023-06-20T00:02:02Z
dc.date.issued2010
dc.description.abstractThe present-day thermal state of the martian interior is a very important issue for understanding the 22 internal evolution of the planet. Here, in order to obtain an improved upper limit for the heat flow at 23 the north polar region, we use the lower limit of the effective elastic thickness of the lithosphere loaded 24 by the north polar cap, crustal heat-producing elements (HPE) abundances based on martian geochem- 25 istry, and a temperature-dependent thermal conductivity for the upper mantle. We also perform similar 26 calculations for the south polar region, although uncertainties in lithospheric flexure make the results 27 less robust. Our results show that the present-day surface and sublithospheric heat flows cannot be 28 higher than 19 and 12 mWm2, respectively, in the north polar region, and similar values might be 29 representative of the south polar region (although with a somewhat higher surface heat flow due to 30 the radioactive contribution from a thicker crust). These values, if representative of martian averages, 31 does not necessarily imply sub-chondritic HPE bulk abundances for Mars (as previously suggested), since 32 (1) chondritic composition models produce a present-day total heat power equivalent to an average sur- 33 face heat flow of 14–22 mWm2 and (2) some convective models obtain similar heat flows for the pres- 34 ent time. Regions of low heat flow may even have existed during the last billions of years, in accordance 35 with several surface heat flow estimates of 20 mWm2 or less for terrains loaded during Hesperian or 36 Amazonian times. On the other hand, there are some evidences suggesting the current existence of 37 regions of enhanced heat flow, and therefore average heat flows could be higher than those obtained 38 for the north (and maybe the south) polar region.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/10547
dc.identifier.doi10.1016/j.icarus.2010.01.016
dc.identifier.issn1054-1381
dc.identifier.officialurlhttp://www.elsevier.com/locate/icarus
dc.identifier.urihttps://hdl.handle.net/20.500.14352/41764
dc.issue.number2
dc.journal.titleIcarus (New York, N.Y. 1991)
dc.language.isoeng
dc.page.final637
dc.page.initial631
dc.publisherRosen Pub. Group
dc.rights.accessRightsopen access
dc.subject.cdu550.2
dc.subject.keywordMars
dc.subject.keywordMars-Interior
dc.subject.keywordThermal histories
dc.subject.ucmGeodinámica
dc.subject.unesco2507 Geofísica
dc.titleThe present-day thermal state of Mars
dc.typejournal article
dc.volume.number207
dspace.entity.typePublication
relation.isAuthorOfPublicationb0242abd-d40a-4c55-83e1-c44f92c5cc1e
relation.isAuthorOfPublication.latestForDiscoveryb0242abd-d40a-4c55-83e1-c44f92c5cc1e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
presentday2.pdf
Size:
288.06 KB
Format:
Adobe Portable Document Format

Collections