Perturbations in electromagnetic dark energy

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of Lambda CDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structures formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as Lambda CDM.
© 2009 IOP Publishing Ltd and SISSA. This work has been supported by Ministerio de Ciencia e Innovación (Spain) project numbers FIS 2008-01323 and FPA 2008-00592, UCM-Santander PR34/07-15875. J.B. wishes to thank the Institute for Theoretical Physics of the University of Heidelberg for their hospitality.
Unesco subjects
[1] Supernova Search Team collaboration, A.G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES]; Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 High-Redshift Supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [SPIRES]. [2] C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B 302 (1988) 668 [SPIRES]; R.R. Caldwell, R. Dave and P.J. Steinhardt, Cosmological Imprint of an Energy Component with General Equation-of-State, Phys. Rev. Lett. 80 (1998) 1582 [astro-ph/9708069] [SPIRES]. [3] C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k Inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [SPIRES]. [4] T. Koivisto and D.F. Mota, Gauss-Bonnet quintessence: Background evolution, large scale structure and cosmological constraints, Phys. Rev. D 75 (2007) 023518 [hep-th/0609155] [SPIRES]; Cosmology and astrophysical constraints of Gauss Bonnet dark energy, Phys. Lett. B 644 (2007) 104 [astro ph/0606078] [SPIRES]. [5] E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep th/0603057] [SPIRES]. [6] S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [SPIRES]. [7] G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES]. [8] R. Durrer and R. Maartens, Dark Energy and Modified Gravity, arXiv:0811.4132 [SPIRES]. [9] V.V. Kiselev, Vector field as a quintessence partner, Class. Quant. Grav. 21 (2004) 3323 [gr-qc/0402095] [SPIRES]; C. Armendariz-Picon, Could dark energy be vector-like?, JCAP 07 (2004) 007 [astro-ph/0405267] [SPIRES]. C.G. Boehmer and T. Harko, Dark energy as a massive vector field, Eur. Phys. J. C 50 (2007) 423 [gr-qc/0701029] [SPIRES]; M. Novello, S.E. Perez Bergliaffa and J. Salim, Nonlinear electrodynamics and the acceleration of the Universe, Phys. Rev. D 69 (2004) 127301 [astro-ph/0312093] [SPIRES]; T. Koivisto and D.F. Mota, Accelerating Cosmologies with an Anisotropic Equation of State, Astrophys. J. 679 (2008) 1 [arXiv:0707.0279] [SPIRES]; H.S. Zhao, Coincidences of Dark Energy with Dark Matter: Clues for a Simple Alternative?, Astrophys. J. 671 (2007) L1; K. Bamba, S. Nojiri and S.D. Odintsov, Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang Mills-F(R) gravity and non-minimal vector-F(R) gravity, Phys. Rev. D 77 (2008) 123532 [arXiv:0803.3384] [SPIRES]; T.S. Koivisto and D.F. Mota, Vector Field Models of Inflation and Dark Energy, JCAP 08 (2008) 021 [arXiv:0805.4229] [SPIRES]; J.B. Jimenez and A.L. Maroto, Cosmological evolution in vector-tensor theories of gravity, Phys. Rev. D 80 (2009) 063512 [arXiv:0905.1245] [SPIRES]. [10] T. Koivisto and D.F. Mota, Anisotropic Dark Energy: Dynamics of Background and Perturbations, JCAP 06 (2008) 018 [arXiv:0801.3676] [SPIRES]; D.F. Mota, J.R. Kristiansen, T. Koivisto and N.E. Groeneboom, Constraining Dark Energy Anisotropic Stress, Mon. Not. Roy. Astron. Soc. 382 (2007) 793 [arXiv:0708.0830] [SPIRES]; T. Koivisto and D.F. Mota, Dark energy anisotropic stress and large scale structure formation, Phys. Rev. D 73 (2006) 083502 [astro-ph/0512135] [SPIRES]; B. Li, D. Fonseca Mota and J.D. Barrow, Detecting a Lorentz-Violating Field in Cosmology, Phys. Rev. D 77 (2008) 024032 [arXiv:0709.4581] [SPIRES]. [11] J.B. Jimenez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev. D 78 (2008) 063005 [arXiv:0801.1486] [SPIRES]; Vector models for dark energy, arXiv:0807.2528 [SPIRES]; J.B. Jimenez, R. Lazkoz and A.L. Maroto, Cosmic vector for dark energy: constraints from SN, CMB and BAO, arXiv:0904.0433 [SPIRES]. [12] C. Germani and A. Kehagias, P-nflation: generating cosmic Inflation with p-forms, JCAP 03 (2009) 028 [arXiv:0902.3667] [SPIRES]; T.S. Koivisto, D.F. Mota and C. Pitrou, Inflation from N-Forms and its stability, JHEP 09 (2009) 092 [arXiv:0903.4158] [SPIRES]. [13] H.K. Eriksen, F.K. Hansen, A.J. Banday, K.M. Gorski and P.B. Lilje, Asymmetries in the CMB anisotropy field, Astrophys. J. 605 (2004) 14 [astro-ph/0307507] [SPIRES]. [14] WMAP collaboration, G. Hinshaw et al., Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature analysis, Astrophys. J. Suppl. 170 (2007) 288 [astro-ph/0603451] [SPIRES]. [15] K. Land and J. Magueijo, The axis of evil, Phys. Rev. Lett. 95 (2005) 071301 [astro-ph/0502237] [SPIRES]. [16] A. Rakic and D.J. Schwarz, Correlating anomalies of the microwave sky: The Good, the Evil and the Axis, Phys. Rev. D 75 (2007) 103002 [astro-ph/0703266] [SPIRES]. [17] G. Efstathiou, A Maximum Likelihood Analysis of the Low CMB Multipoles from WMAP, Mon. Not. Roy. Astron. Soc. 348 (2004) 885 [astro-ph/0310207] [SPIRES]. [18] A. de Oliveira-Costa, M. Tegmark, M. Zaldarriaga and A. Hamilton, The significance of the largest scale CMB fluctuations in WMAP, Phys. Rev. D 69 (2004) 063516 [astro ph/0307282] [SPIRES]. [19] J. Magueijo and R.D. Sorkin, Occam’s razor meets WMAP, Mon. Not. Roy. Astron. Soc. Lett. 377 (2007) L39. [20] P. Bielewicz, K.M. Gorski and A.J. Banday, Low order multipole maps of CMB anisotropy derived from WMAP, Mon. Not. Roy. Astron. Soc. 355 (2004) 1283 [astro-ph/0405007] [SPIRES]. [21] S.L. Bridle, A.M. Lewis, J. Weller and G. Efstathiou, Reconstructing the primordial power spectrum, Mon. Not. Roy. Astron. Soc. 342 (2003) L72 [astro-ph/0302306] [SPIRES]. [22] D.J. Schwarz, G.D. Starkman, D. Huterer and C.J. Copi, Is the low-l microwave background cosmic?, Phys. Rev. Lett. 93 (2004) 221301 [astro-ph/0403353] [SPIRES]. [23] A. Slosar, U. Seljak and A. Makarov, Exact likelihood evaluations and foreground marginalization in low resolution WMAP data, Phys. Rev. D 69 (2004) 123003 [astro-ph/0403073] [SPIRES]. [24] S. Prunet, J.-P. Uzan, F. Bernardeau and T. Brunier, Constraints on mode couplings and modulation of the CMB with WMAP data, Phys. Rev. D 71 (2005) 083508 [astro-ph/0406364] [SPIRES]. [25] J. Hoftuft et al., Increasing evidence for hemispherical power asymmetry in the five-year WMAP data, Astrophys. J. 699 (2009) 985 [arXiv:0903.1229] [SPIRES]. [26] F.K. Hansen, A.J. Banday, K.M. Gorski, H.K. Eriksen and P.B. Lilje, Power Asymmetry in Cosmic Microwave Background Fluctuations from Full Sky to Sub-degree Scales: Is the Universe Isotropic?, arXiv:0812.3795 [SPIRES]. [27] N.E. Groeneboom and H.K. Eriksen, Bayesian analysis of sparse anisotropic universe models and application to the 5 yr WMAP data, Astrophys. J. 690 (2009) 1807 [arXiv:0807.2242] [SPIRES]. [28] J.B. Jimenez and A.L. Maroto, Cosmological electromagnetic fields and dark energy, JCAP 03 (2009) 016 [arXiv:0811.0566] [SPIRES]; The electromagnetic dark sector, arXiv:0903.4672 [SPIRES]; Viability of vector-tensor theories of gravity, JCAP 02 (2009) 025 [arXiv:0811.0784] [SPIRES]; Avoiding the dark energy coincidence problem with a cosmic vector, AIP Conf. Proc. 1122 (2009) 107 [arXiv:0812.1970] [SPIRES]. [29] D.C. Rodrigues, Anisotropic Cosmological Constant and the CMB Quadrupole Anomaly, Phys. Rev. D 77 (2008) 023534 [arXiv:0708.1168] [SPIRES]. [30] J.B. Jimenez and A.L. Maroto, Dark energy: the absolute electric potential of the universe, arXiv:0905.2589 [SPIRES]. [31] M.S. Turner and L.M. Widrow, Inflation Produced, Large Scale Magnetic Fields, Phys. Rev. D 37 (1988) 2743 [SPIRES]. [32] O. Bertolami and D.F. Mota, Primordial magnetic fields via spontaneous breaking of Lorentz invariance, Phys. Lett. B 455 (1999) 96 [gr-qc/9811087] [SPIRES]. [33] C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072] [SPIRES]. [34] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203 [SPIRES]. [35] A. Lewis, A. Challinor and A. Lasenby, Efficient Computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [SPIRES]. [36] J.M. Stewart and M. Walker, Perturbations of spacetimes in general relativity, Proc. Roy. Soc. Lond. A 341 (1974) 49 [SPIRES].