Brane-Skyrmions and wrapped states

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
In the context of a brane world and including an induced curvature term in the brane action, we obtain the effective Lagrangian for the Goldstone bosons (branons) associated with the spontaneous breaking of the translational invariance in the bulk. In addition to the branons, this effective action has Skyrmion-like solitonic states which can be understood as holes in the brane. We study their main properties such as mass and size, the Skyrmion-branon interaction, and their possible fermionic quantization. We also consider states where the brane is wrapped around the extra dimensions and their relation with the brane-Skyrmions. Finally, we extend our results to higher-dimensional branes, such as those appearing in M theory, where brane-Skyrmions could also be present.
©2001 The American Physical Society. This work was partially supported by the Ministerio de Educación y Ciencia (Spain) (CICYT AEN 97-1693 and PB98-0782)
Unesco subjects
1. T. Kaluza, Sitzungsber. K. Preuss. Akad. Wiss. K1, 966 (1921); O. Klein, Z. Phys. 37, 895 (1926). 2. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. 125B, 136 (1983). 3. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D 59, 086004 (1999); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998); T. Banks, M. Dine, and A. Nelson, J. High Energy Phys. 06, 014 (1999). 4. A. Perez-Lorenzana, hep-ph/0008333. 5. D. Bailin and A. Love, Rep. Prog. Phys. 50, 1087 (1987). 6. G. Giudice, R. Rattazzi, and J.D. Wells, Nucl. Phys. B544, 3 (1999); E.A. Mirabelli, M. erelstein, and M.E. Peskin, Phys. Rev. Lett. 82, 2236 (1999). 7. M. Bando, T. Kugo, T. Noguchi, and K. Yoshioka, Phys. Rev. Lett. 83, 3601 (1999); J. Hisano and N. Okada, Phys. Rev. D 61, 106003 (2000); R. Contino, L. Pilo, R. Rattazzi, and A. Strumia, J. High Energy Phys. 06, 005 (2001). 8. R. Sundrum, Phys. Rev. D 59, 085009 (1999). 9. T. Kugo and K. Yoshioka, Nucl. Phys. B594, 301 (2001); P. Creminelli and A. Strumia, ibid. B596, 125 (2001). 10. J.M. Cornwall, D.N. Levin, and G. Tiktopoulos, Phys. Rev. D 10, 1145 ~1974!; B.W. Lee, C. Quigg, and H. Thacker, ibid. 16, 1519 (1977). 11. G. Dvali, I.I. Kogan, and M. Shifman, Phys. Rev. D 62,106001 (2000). 12. T.H.R. Skyrme, Proc. R. Soc. London A260, 127 (1961); Nucl. Phys. 31, 556 (1962). 13. E. Witten, Nucl. Phys. B223, 422 (1983); B223, 433 (1983). 14. A. Dobado and A.L. Maroto, Nucl. Phys. B592, 203 (2001). 15. S. Weinberg, Physica A 96, 327 (1979); J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). 16. A. Dobado and M.J. Herrero, Phys. Lett. B 228, 495 (1989); 233, 505 (1989). 17. A. Dobado, A. Gómez-Nicola, A. L. Maroto, and J. R. Peláez, Effective Lagrangians for the Standard Model (SpringerVerlag, Heidelberg, 1997). 18. G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000). 19. G.S. Adkins, C.R. Nappi, and E. Witten, Nucl. Phys. B228, 552 (1983). 20. M.F. Atiyah and N.S. Manton, Phys. Lett. B 222, 438 (1989). 21. M.G. Clements and S.H. Henry Tye, Phys. Rev. D 33, 1424 (1986); A. Dobado and J. Terrón, ibid. 45, 3090 (1992). 22. N.D. Birrel and P.C.W. Davies, Quantum Fields in Curved Space-time (Cambridge University Press, Cambridge, England, 1982).