Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Structural origin of the Sn 4d core level line shape in Sn/Ge(111)-(3 x 3)

dc.contributor.authorTejeda, A.
dc.contributor.authorCortés, R
dc.contributor.authorLobo Checa, J.
dc.contributor.authorDidiot, C.
dc.contributor.authorKierren, B
dc.contributor.authorMalterre, D.
dc.contributor.authorMichel, E. G.
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.date.accessioned2023-06-20T10:50:05Z
dc.date.available2023-06-20T10:50:05Z
dc.date.issued2008-01-18
dc.description© 2008 The American Physical Society. We thank J. M. Rojo for fruitful discussions. This work was supported by MEC and CAM (Spain) (Grants No. FIS2006-04552, No. FIS2005-00747, and No. and European Social Fund). Part of this work was performed at the Swiss Light Source, Villigen, Switzerland.
dc.description.abstractHigh-resolution photoemission of the Sn 4d core level of Sn/Ge(111)-(3x3) resolves three main components in the line shape, which are assigned to each of the three Sn atoms that form the unit cell. The line shape found is in agreement with an initial state picture and supports that the two down atoms are inequivalent. In full agreement with these results, scanning tunnel microscopy images directly show that the two down atoms are at slightly different heights in most of the surface, giving rise to an inequivalent-down-atoms (3x3) structure. These results solve a long-standing controversy on the interpretation of the Sn 4d core-level line shape and the structure of Sn/Ge(111)-(3x3).
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC (Spain)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Social Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28335
dc.identifier.doi10.1103/PhysRevLett.100.026103
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.100.026103
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51308
dc.issue.number2
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2006-04552
dc.relation.projectIDFIS2005-00747
dc.relation.projectID(0505/PPQ/0316)
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordDynamical fluctuations
dc.subject.keywordPhase-transitions
dc.subject.keywordLow-temperature
dc.subject.keywordSurface phase
dc.subject.keywordStm
dc.subject.ucmFísica de materiales
dc.titleStructural origin of the Sn 4d core level line shape in Sn/Ge(111)-(3 x 3)
dc.typejournal article
dc.volume.number100
dcterms.references[1] J. C. Phillips and M. F. Thorpe, Phase Transitions and Self-Organization in Electronic and olecular Networks (Kluwer, New York, 2001). [2] J. M. Carpinelli et al., Phys. Rev. Lett. 79, 2859 (1997). [3] A. Mascaraque et al., Phys. Rev. Lett. 82, 2524 (1999). [4] J. Avila et al., Phys. Rev. Lett. 82, 442 (1999). [5] O. Bunk et al., Phys. Rev. Lett. 83, 2226 (1999). [6] L. Floreano et al., Phys. Rev. B 64, 075405 (2001). [7] R. Cortés et al., Phys. Rev. Lett. 96, 126103 (2006). [8] D. Farı´as et al., Phys. Rev. Lett. 91, 016103 (2003). [9] J. S. Okasinski et al., Phys. Rev. B 69, 041401(R) (2004). [10] F. Ronci et al., Phys. Rev. Lett. 95, 156101 (2005). [11] Y. Fukaya, A. Kawasuso, and A. Ichimiya, Surf. Sci. 600, 4086 (2006). [12] A. Tejeda et al., J. Phys. Condens. Matter 19, 355008 (2007). [13] S. de Gironcoli et al., Surf. Sci. 454 – 456, 172 (2000). [14] L. Jurczyszyn et al., Surf. Sci. 482 – 485, 1350 (2001). [15] J. Ortega, R. Pérez, and F. Flores, J. Phys. Condens. Matter 14, 5979 (2002). [16] P. Gori, O. Pulci, and A. Cricenti, J. Phys. IV 132, 91 (2006). [17] M. Göthelid et al., Phys. Rev. B 52, R14352 (1995). [18] R. I. G. Uhrberg, H. W. Zhang, and T. Balasubramanian, Phys. Rev. Lett. 85, 1036 (2000). [19] R. I. G. Uhrberg and T. Balasubramanian, Phys. Rev. Lett. 81, 2108 (1998). [20] M. Goshtasbi Rad et al., Surf. Sci. 477, 227 (2001). [21] L. Petaccia et al., Phys. Rev. B 63, 115406 (2001); 64, 193410 (2001). [22] T.-L. Lee et al., Phys. Rev. Lett. 96, 046103 (2006). [23] F. Flores et al., Prog. Surf. Sci. 67, 299 (2001). [24] G. Profeta and E. Tosatti, Phys. Rev. Lett. 98, 086401 (2007). [25] S. Modesti et al., Phys. Rev. Lett. 98, 126401 (2007). [26] I. Horcas et al., Rev. Sci. Instrum. 78, 013705 (2007). [27] R P ijS i M ij= P ijM ij, where M i are the experimental values and S i is the fit. [28] The relative intensities are affected by PED effects, but the required change is larger than the observed intensity variations due to this effect [21]. [29] R. Cortés et al. (to be published). [30] Lorentzian widths may be affected by the oxidation state due to changes of the Auger decay rate [31]. However, our sensitivity is not enough to determine independent LWs for each C2, C3, and C4 doublet. [31] J. J. Paggel et al., Surf. Sci. 414, 221 (1998). [32] The residual observed around 25–26 eV is probably due to an additional defect component. [33] V. Dudr et al., Phys. Rev. B 70, 155334 (2004). [34] A. V. Melechko et al., Phys. Rev. B 61, 2235 (2000). [35] A. V. Melechko et al., Phys. Rev. B 64, 235424 (2001). (a)
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 24libre.pdf
Size:
612.42 KB
Format:
Adobe Portable Document Format

Collections