Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body

dc.contributor.authorPan, Chenchen
dc.contributor.authorSchoppe, Oliver
dc.contributor.authorParra-Damas, Arnaldo
dc.contributor.authorCai, Ruiyao
dc.contributor.authorTodorov, Mihail Ivilinov
dc.contributor.authorGondi, Gabor
dc.contributor.authorNeubeck, Bettina von
dc.contributor.authorBöğürcü-Seidel, Nuray
dc.contributor.authorSeidel, Sascha
dc.contributor.authorSleiman, Katia
dc.contributor.authorVeltkamp, Christian
dc.contributor.authorFörstera, Benjamin
dc.contributor.authorMai, Hongcheng
dc.contributor.authorRong, Zhouyi
dc.contributor.authorTrompak, Omelyan
dc.contributor.authorGhasemigharagoz, Alireza
dc.contributor.authorReimer, Madita Alice
dc.contributor.authorCoronel, Javier
dc.contributor.authorJeremias, Irmela
dc.contributor.authorSaur, Dieter
dc.contributor.authorAcker-Palmer, Amparo
dc.contributor.authorAcker, Till
dc.contributor.authorGarvalov, Boyan K.
dc.contributor.authorCuesta Martínez, Ángel
dc.contributor.authorMenze, Bjoern
dc.contributor.authorZeidler, Reinhard
dc.contributor.authorErtürk, Ali
dc.date.accessioned2024-01-19T10:54:47Z
dc.date.available2024-01-19T10:54:47Z
dc.date.issued2019
dc.description.abstractReliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage.
dc.description.departmentDepto. de Bioquímica y Biología Molecular
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipHelmholtz-Center
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipBundesministerium für Forschung, Technologie und Raumfahrt
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipExcellence Cluster Cardio-Pulmonary Institute
dc.description.statuspub
dc.identifier.citationPan C, Schoppe O, Parra-Damas A, et al. Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body. Cell. 2019;179(7):1661-1676.e19. doi:10.1016/j.cell.2019.11.013
dc.identifier.doi10.1016/j.cell.2019.11.013
dc.identifier.issn0092-8674
dc.identifier.officialurlhttps://doi.org/10.1016/j.cell.2019.11.013
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94010
dc.journal.titleCell
dc.language.isoeng
dc.page.final1667
dc.page.initial1661
dc.relation.projectIDinfo:eu-repo/grantAgreement/681524
dc.rights.accessRightsrestricted access
dc.subject.cdu577.1
dc.subject.cdu577.2
dc.subject.ucmBiología molecular (Farmacia)
dc.subject.ucmBioquímica (Farmacia)
dc.subject.unesco24 Ciencias de la Vida
dc.titleDeep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number179
dspace.entity.typePublication
relation.isAuthorOfPublication963e050e-5a67-40d7-8e25-3dc7ff5a8619
relation.isAuthorOfPublication.latestForDiscovery963e050e-5a67-40d7-8e25-3dc7ff5a8619

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_Learning_Reveals_Cancer_Metastasis.pdf
Size:
9.68 MB
Format:
Adobe Portable Document Format

Collections