Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Anomaly freedom in Seiberg-Witten noncommutative gauge theories

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorPérez Martín, Carmelo
dc.date.accessioned2023-06-20T10:41:38Z
dc.date.available2023-06-20T10:41:38Z
dc.date.issued2003-07
dc.description© SISSA/ISAS 2003. CPM and FRR are grateful to CICyT, Spain for partial support through grant No. BFM2002-00950.
dc.description.abstractWe show that noncommutative gauge theories with arbitrary compact gauge group defined by means of the Seiberg-Witten map have the same one-loop anomalies as their commutative counterparts. This is done in two steps. By explicitly calculating the epsilon(mu1mu2mu3mu4) part of the renormalized effective action, we first find the would-be one-loop anomaly of the theory to all orders in the noncommutativity parameter theta(munu). And secondly we isolate in the would-be anomaly radiative corrections which are not BRS trivial. This gives as the only true anomaly occurring in the theory the standard Bardeen anomaly of commutative spacetime, which is set to zero by the usual anomaly cancellation condition.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICyT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25060
dc.identifier.doi10.1088/1126-6708/2003/07/068
dc.identifier.issn1126-6708
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1126-6708/2003/07/068
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-th/0307292
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51012
dc.journal.titleJournal of High Energy Physics
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDBFM2002-00950
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordLocal Brst Cohomology
dc.subject.keywordYang-Mills Theory
dc.subject.keywordStandard Model
dc.subject.keywordSpaces
dc.subject.keywordRenormalization
dc.subject.keywordMap
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleAnomaly freedom in Seiberg-Witten noncommutative gauge theories
dc.typejournal article
dcterms.references[1] J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203]. [2] B. Jurco, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for non-abelian gauge groups on non-commutative spaces, Eur. Phys. J. C 17 (2000) 521 [hep-th/0006246]. [3] N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High Energy Phys. 09 (1999) 032 [hep-th/9908142]. [4] B. Jurco, P. Schupp and J. Wess, Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nucl. Phys. B 604 (2001) 148 [hep-th/0102129]. [5] B. Jurco, L. Moller, S. Schraml, P. Schupp and J. Wess, Construction of non-abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep th/0104153]. [6] X. Calmet, B. Jurco, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115]. [7] S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane and T. Okamoto, Noncommutative ¯eld theory and Lorentz violation, Phys. Rev. Lett. 87 (2001) 141601 [hep th/0105082]. [8] C.E. Carlson, C.D. Carone and R.F. Lebed, Bounding noncommutative QCD, Phys. Lett. B 518 (2001) 201 [hep ph/0107291]. [9] W. Behr et al., The z! °°; gg decays in the noncommutative standard model, hep-ph/0202121. [10] C.E. Carlson, C.D. Carone and R.F. Lebed, Supersymmetric noncommutative QED and Lorentz violation, Phys. Lett. B 549 (2002) 337 [hep-ph/0209077]. [11] P. Schupp, J. Trampetic, J. Wess and G. Ra®elt, The photon neutrino interaction in non-commutative gauge ¯eld theory and astrophysical bounds, hep-ph/0212292. [12] P. Minkowski, P. Schupp and J. Trampetic, Non commutative `*-charge radius' and `*-dipole moment' of the neutrino, hep-th/0302175. [13] P. Aschieri, B. Jurco, P. Schupp and J. Wess, Non commutative GUTs, standard model and C, P, T, Nucl. Phys. B 651 (2003) 45 [hep-th/0205214]. [14] G. Barnich and M. Henneaux, Renormalization of gauge invariant operators and anomalies in Yang-Mills theory, Phys. Rev. Lett. 72 (1994) 1588 [hep-th/9312206]. [15] G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in the anti¯eld formalism, 2. Application to Yang-Mills theory, Commun. Math. Phys. 174 (1995) 93 [hep th/9405194]. [16] G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories, Phys. Rept. 338 (2000) 439 [hep-th/0002245]. { 24 { JHEP07(2003)068 [17] R. Wulkenhaar, Non-renormalizability of theta-expanded noncommutative QED, J. High Energy Phys. 03 (2002) 024 [hep th/0112248]. [18] C.P. Martin, The gauge anomaly and the Seiberg-Witten map, Nucl. Phys. B 652 (2003) 72 [hep th/0211164]. [19] R. Banerjee and S. Ghosh, Seiberg-Witten map and the axial anomaly in noncommutative ¯eld theory, Phys. Lett. B 533 (2002) 162 [hep-th/0110177]. [20] R. Banerjee, Anomalies in noncommutative gauge theories, Seiberg-Witten transformation and Ramond-Ramond couplings, hep-th/0301174. [21] B.L. Cerchiai, A.F. Pasqua and B. Zumino, The Seiberg Witten map for noncommutative gauge theories, hep th/0206231. [22] P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle, Commun. Math. Phys. 52 (1977) 11. [23] G. Barnich, F. Brandt and M. Grigoriev, Seiberg-Witten maps and noncommutative Yang-Mills theories for arbitrary gauge groups, J. High Energy Phys. 08 (2002) 023 [hep th/0206003]. [24] H. Georgi and S.L. Glashow, Gauge theories without anomalies, Phys. Rev. D 6 (1972) 429. [25] J.M. Gracia-Bondia and C.P. Martin, Chiral gauge anomalies on noncommutative R4, Phys. Lett. B 479 (2000) 321 [hep-th/0002171]. [26] L. Bonora, M. Schnabl and A. Tomasiello, A note on consistent anomalies in noncommutative YM theories, Phys. Lett. B 485 (2000) 311 [hep-th/0002210]. [27] D.J. Gross and R. Jackiw, E®ect of anomalies on quasirenormalizable theories, Phys. Rev. D 6 (1972) 477. [28] F. Brandt, N. Dragon and M. Kreuzer, Completeness and nontriviality of the solutions of the consistency conditions, Nucl. Phys. B 332 (1990) 224.
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublicationbf7276d2-1dee-4422-a116-e02a2b8b0ba3
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Ruiz FR10.pdf
Size:
298.7 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Ruiz FR10preprint.pdf
Size:
292.15 KB
Format:
Adobe Portable Document Format

Collections