Sequences of Levy transformations and multi-wrónski determinant solutions of the Darboux system

dc.contributor.authorLiu, Q. P.
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-20T20:09:14Z
dc.date.available2023-06-20T20:09:14Z
dc.date.issued1998-09
dc.description©Elsevier. M.M. would like to thank A. Doliwa and P. M. Santini for useful conversations.
dc.description.abstractSequences of Levy transformations for the Darboux system of conjugates nets in multidimensions are studied. We show that after a suitable number of Levy transformations, with at least a Levy transformation in each direction, we get closed formulae in terms of multi-Wrónski determinants. These formulae are for the tangent vectors, Lamè coefficients, rotation coefficients and points of the surface.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32497
dc.identifier.doi10.1016/S0393-0440(97)00074-0
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0393-0440(97)00074-0
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/dg-ga/9707013
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59694
dc.issue.number3-abr.
dc.journal.titleJournal of geometry and physics
dc.language.isoeng
dc.page.final184
dc.page.initial178
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordLevy transformations
dc.subject.keywordMulti-Wrońki determinants
dc.subject.keywordDarboux system
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleSequences of Levy transformations and multi-wrónski determinant solutions of the Darboux system
dc.typejournal article
dc.volume.number273
dcterms.references[1] M. Crum, Quart. J. Math. 6 (1955) 121. [2] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, J. Phys. Soc. Japan 50 (1981) 3806. [3] G. Darboux, Le¸cons sur la théorie générale des surfaces IV, Liv. VIII, Chap. XII, Chelsea Publishing Company, New York (1972). [4] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfces, Ginn and Co., Boston (1909). [5] L. P. Eisenhart, Transformations of Surfaces, Chelsea Publishing Company, New York (1962). [6] N.C. Freeman, IMA J. Appl. Math. 32 (1984) 125. [7] E. S. Hammond, Ann. Math. 22 (1920) 238. [8] B. G. Konopelchenko, Phys. Lett. A183 (1993) 153. [9] B. G. Konopelchenko and W. K. Shief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations, Preprint AM93/9, UNSW (1993). [10] L. Levy, J. l’École Polytecnique 56 (1886) 63. [11] J. J. C. Nimmo, Inverse Problems 8 (1992) 219. [12] O. Schreier and E. Sperner, Introduction to Modern Algebra and Matrix Theory, Chelsea Publishing Company, New York (1951). [13] G. Tzitzeica, C. R. Acad. Sci. Paris 156 (1913) 375. [14] V. E. Zakharov and S. E. Manakov, Func. Anal. Appl. 19 (1985) 11.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas38preprint.pdf
Size:
109.7 KB
Format:
Adobe Portable Document Format

Collections