Sequences of Levy transformations and multi-wrónski determinant solutions of the Darboux system
| dc.contributor.author | Liu, Q. P. | |
| dc.contributor.author | Mañas Baena, Manuel Enrique | |
| dc.date.accessioned | 2023-06-20T20:09:14Z | |
| dc.date.available | 2023-06-20T20:09:14Z | |
| dc.date.issued | 1998-09 | |
| dc.description | ©Elsevier. M.M. would like to thank A. Doliwa and P. M. Santini for useful conversations. | |
| dc.description.abstract | Sequences of Levy transformations for the Darboux system of conjugates nets in multidimensions are studied. We show that after a suitable number of Levy transformations, with at least a Levy transformation in each direction, we get closed formulae in terms of multi-Wrónski determinants. These formulae are for the tangent vectors, Lamè coefficients, rotation coefficients and points of the surface. | |
| dc.description.department | Depto. de Física Teórica | |
| dc.description.faculty | Fac. de Ciencias Físicas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/32497 | |
| dc.identifier.doi | 10.1016/S0393-0440(97)00074-0 | |
| dc.identifier.issn | 0393-0440 | |
| dc.identifier.officialurl | http://dx.doi.org/10.1016/S0393-0440(97)00074-0 | |
| dc.identifier.relatedurl | http://www.sciencedirect.com | |
| dc.identifier.relatedurl | http://arxiv.org/abs/dg-ga/9707013 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/59694 | |
| dc.issue.number | 3-abr. | |
| dc.journal.title | Journal of geometry and physics | |
| dc.language.iso | eng | |
| dc.page.final | 184 | |
| dc.page.initial | 178 | |
| dc.publisher | Elsevier | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 51-73 | |
| dc.subject.keyword | Levy transformations | |
| dc.subject.keyword | Multi-Wrońki determinants | |
| dc.subject.keyword | Darboux system | |
| dc.subject.ucm | Física-Modelos matemáticos | |
| dc.subject.ucm | Física matemática | |
| dc.title | Sequences of Levy transformations and multi-wrónski determinant solutions of the Darboux system | |
| dc.type | journal article | |
| dc.volume.number | 273 | |
| dcterms.references | [1] M. Crum, Quart. J. Math. 6 (1955) 121. [2] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, J. Phys. Soc. Japan 50 (1981) 3806. [3] G. Darboux, Le¸cons sur la théorie générale des surfaces IV, Liv. VIII, Chap. XII, Chelsea Publishing Company, New York (1972). [4] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfces, Ginn and Co., Boston (1909). [5] L. P. Eisenhart, Transformations of Surfaces, Chelsea Publishing Company, New York (1962). [6] N.C. Freeman, IMA J. Appl. Math. 32 (1984) 125. [7] E. S. Hammond, Ann. Math. 22 (1920) 238. [8] B. G. Konopelchenko, Phys. Lett. A183 (1993) 153. [9] B. G. Konopelchenko and W. K. Shief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations, Preprint AM93/9, UNSW (1993). [10] L. Levy, J. l’École Polytecnique 56 (1886) 63. [11] J. J. C. Nimmo, Inverse Problems 8 (1992) 219. [12] O. Schreier and E. Sperner, Introduction to Modern Algebra and Matrix Theory, Chelsea Publishing Company, New York (1951). [13] G. Tzitzeica, C. R. Acad. Sci. Paris 156 (1913) 375. [14] V. E. Zakharov and S. E. Manakov, Func. Anal. Appl. 19 (1985) 11. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 0d5b5872-7553-4b33-b0e5-085ced5d8f42 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0d5b5872-7553-4b33-b0e5-085ced5d8f42 |
Download
Original bundle
1 - 1 of 1


