Multivariate Mixture Model for Small Area Estimation of Poverty Indicators

dc.contributor.authorBikauskaite, Agne
dc.contributor.authorMolina Peralta, Isabel
dc.contributor.authorMorales González, Domingo
dc.date.accessioned2025-10-20T16:56:32Z
dc.date.available2025-10-20T16:56:32Z
dc.date.issued2022
dc.description.abstractWhen disaggregation of national estimates in several domains or areas is required, direct survey estimators, which use only the domain-specific survey data, are usually design-unbiased even under complex survey designs (at least approximately) and require no model assumptions. Nevertheless, they are appropriate only for domains or areas with sufficiently large sample size. For example, when estimating poverty in a domain with a small sample size (small area), the volatility of a direct estimator might make that area seems like very poor in one period and very rich in the next one. Small area (or indirect) estimators have been developed in order to avoid such undesired instability. Small area estimators borrow strength from the other areas so as to improve the precision and therefore obtain much more stable estimators. However, the usual model-based assumptions, which include some kind of area homogeneity, may not hold in real applications. A more flexible model based on multivariate mixtures of normal distributions that generalises the usual nested error linear regression model is proposed for estimation of general parameters in small areas. This flexibility makes the model adaptable to more general situations, where there may be areas with a different behaviour from the other ones, making the model less restrictive (hence, more close to nonparametric) and more robust to outlying areas. An expectation-maximisation (E-M) method is designed for fitting the proposed mixture model. Under the proposed mixture model, two different new predictors of general small area indicators are proposed. A parametric bootstrap method is used to estimate the mean squared errors of the proposed predictors. Small sample properties of the new predictors and of the bootstrap procedure are analysed by simulation studies and the new methodology is illustrated with an application to poverty mapping in Palestine.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.sponsorshipGeneralitat Valenciana
dc.description.statuspub
dc.identifier.doi10.1111/rssa.12965
dc.identifier.issn0964-1998
dc.identifier.issn1467-985X
dc.identifier.officialurlhttps://doi.org/10.1111/rssa.12965
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125140
dc.issue.numberSupplement_2
dc.journal.titleJournal of the Royal Statistical Society Series A: Statistics in Society
dc.language.isoeng
dc.page.finalS755
dc.page.initialS724
dc.publisherOxford University Press
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096840-B-I00/ES/MODELOS MIXTOS Y ESTIMACION EN AREAS PEQUEÑAS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115598RB-I00/ES/CARTOGRAFIA DE LA POBREZA BAJO ESCENARIOS COMPLEJOS/
dc.relation.projectIDprometeo/2021/063
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.keywordEmpirical best estimator
dc.subject.keywordExpectation-maximisation algorithm
dc.subject.keywordNested error model
dc.subject.keywordNormal mixture model
dc.subject.keywordParametric bootstrap
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.ucmEstadística aplicada
dc.subject.unesco1209 Estadística
dc.titleMultivariate Mixture Model for Small Area Estimation of Poverty Indicators
dc.typejournal article
dc.volume.number185
dspace.entity.typePublication
relation.isAuthorOfPublicationa3c33f79-7b2c-4b7b-9def-392b85b056a2
relation.isAuthorOfPublication4d5cedd9-975b-43fb-bc2e-f55dec36a2bf
relation.isAuthorOfPublication.latestForDiscoverya3c33f79-7b2c-4b7b-9def-392b85b056a2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BikauskaiteMolinaMorales2022_JRSSA.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format

Collections