Publication:
Dust growth in molecular cloud envelopes: a numerical approach

dc.contributor.authorBeitia Antero, Leire
dc.contributor.authorGómez de Castro, Ana Inés
dc.date.accessioned2023-06-17T09:03:00Z
dc.date.available2023-06-17T09:03:00Z
dc.date.issued2021-03
dc.description© 2021. The American Astronomical Society. We want to thank an anonymous referee for their useful suggestions that have helped to improve the clarity of this manuscript. We want to thank Juan Carlos Vallejo for fruitful discussion about the coagulation algorithm. L. B.-A. acknowledges Universidad Complutense de Madrid and Banco Santander for the grant “Personal Investigador en Formación CT17/17-CT18/17”. This work has been partially funded by the Ministry of Economy and Competitiveness of Spain through grants MINECO-ESP2015-68908-R and MINECO-ESP2017- 87813-R. This research has made use of NASA’s Astrophysics Data System.
dc.description.abstractVariations in the grain size distribution are to be expected in the interstellar medium (ISM) due to grain growth and destruction. In this work, we present a dust collision model to be implemented inside a magnetohydrodynamical (MHD) code that takes into account grain growth and shattering of charged dust grains of a given composition (silicate or graphite). We integrate this model in the MHD code Athena, and builds on a previous implementation of the dynamics of charged dust grains in the same code. To demonstrate the performance of this coagulation model, we study the variations in the grain size distribution of a single-sized population of dust with radius 0.05 µm inside several dust filaments formed during a 2D MHD simulation. We also consider a realistic dust distribution with sizes ranging from 50 Å to 0.25 µm and analyze both the variations in the size distribution for graphite and silicates, as well as of the far ultraviolet extinction curve. From the obtained results, we conclude that the methodology here presented, based on the MHD evolution of the equation of motion for a charged particle, is optimal for studying the coagulation of charged dust grains in a diffuse regime such as a molecular cloud envelope. Observationally, these variations in the dust size distribution are translated into variations in the far ultraviolet extinction curve, and they are mainly caused by small graphite dust grains.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid /Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65016
dc.identifier.doi10.3847/1538-4357/abe45f
dc.identifier.issn0004-637X
dc.identifier.officialurlhttp://dx.doi.org/10.3847/1538-4357/abe45f
dc.identifier.relatedurlhttps://iopscience.iop.org/
dc.identifier.relatedurlhttps://arxiv.org/abs/2103.05344
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8035
dc.issue.number2
dc.journal.titleAstrophysical journal
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.projectID(MINECO-ESP2015-68908-R; MINECO-ESP2017-87813-R)
dc.relation.projectIDCT17/17-CT18/17
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordAstronomy
dc.subject.keywordAstrophysics
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleDust growth in molecular cloud envelopes: a numerical approach
dc.typejournal article
dc.volume.number909
dspace.entity.typePublication
relation.isAuthorOfPublicationd64e60c9-7a76-4dd2-b843-9f76ffbd9f19
relation.isAuthorOfPublication.latestForDiscoveryd64e60c9-7a76-4dd2-b843-9f76ffbd9f19
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
beitiaantero02preprint.pdf
Size:
907.95 KB
Format:
Adobe Portable Document Format
Collections