A dimension-based representation in multicriteria decision making

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Eduard Montseny & Pilar Sobrerilla
Google Scholar
Research Projects
Organizational Units
Journal Issue
Dimension Theory allows the representation of any finite set of alternatives in a real space, provided that the associated preference relation de- fines a partial order set. Such a representation can be very useful whenever criteria are not known,are therefore we can not even address the problem of evaluating their respective weights. In this paper we propose that the importance of underlying criteria can be approached taking into account those possible representations associated to the dimension of the binary preference relations between criteria.
Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2005) and Recontrés Prancophones sur la Logique Floue et ses Applications (LFA 2005) Fourth (EUSFLAT 2005) and 11 (LFA 2005) 2005 Barcelona, Spain European Society for Fuzzy Logic and Technology; Universitat Politècnica de Catalunya Organizer; International Fuzzy Systems Association
[1] J.P. Doignon and J. Mitas: Dimension of valued relations. European Journal of Oper-ational Research 125 (2000), 571{587. [2] B. Dushnik and E.W. Miller: Partially or-dered sets. American Journal of Mathematics 63 (1941), 600{610. [3] J. Figueira and B. Roy: Determining the weights of criteria in the ELECTRE type methods with a revised Simon's procedure. European Journal Of Operational Research 139 (2002), 317-326. [4] J.C. Fodor and M. Roubens: Structure of valued binary relations. Mathematical Social Sciences 30 (1995), 71{94. [5] J. Gonzalez-Pachon, D. Gomez, J. Montero and J. Yañez: Searching for the dimension of binary valued preference relations. Inter-national Journal of Approximate Reasoning 33 (2003) 133-157. [6] J. Gonzalez-Pachon, D. Gomez, J. Montero and J. Yañez. Soft dimension theory. Fuzzy Sets and Systems 137 (2003) 137-149. [7] D. Gomez, J. Montero, J. Yanez, J.Gonzalez-Pachon and V. Cutello. Dimen-sional representation of valued preference re-lations. International Journal of General Sys-tems. (2004) [8] R. L. Keeny and H. Raiffa. Decision with multiple objetives- preferences and valued tradeoffs. Cambridge University Press, Cam-bridge (1993). [9] B. Roy: Decision aid and decision making.European Journal of Operational Research 45 (1990), 324{331. [10] T. L. Saaty. The analytic hierarchy process,MacGraw Hill, New York. (1980) [11] J. Simos. L'evaluation environnementale: Un processus cognitif ngoci Thse de doctorat,DGF-EPFL, Lausanne. (1990). [12] E. Szpilrajn: Sur l'extension de l'ordre par-tiel.Fundamenta Mathematicae 16 (1930),386{389. [13] W.T. Trotter: Combinatorics and Partially Ordered Sets. Dimension Theory. The Johns Hopkins University Press, Baltimore and London (1992). [14] J. Yañez and J. Montero: A poset dimension algorithm. Journal of Algorithms 30 (2000),185{208.