Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lineability, spaceability, and algebrability of certain subsets of function spaces.

dc.contributor.authorGarcía-Pacheco, F.J.
dc.contributor.authorMartín Conde, María
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T10:33:06Z
dc.date.available2023-06-20T10:33:06Z
dc.date.issued2009
dc.description.abstractWe construct infinite-dimensional Banach spaces and infinitely generated Banach algebras of functions that, except for 0, satisfy some kind of special or pathological property. Three of these structures are: a Banach algebra of everywhere continuous bounded functions which are not Riemann-integrable; a Banach space of Lebesgue-integrable functions that are not Riemann-integrable; an algebra of continuous unbounded functions defined on an arbitrary non-compact metric space.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20032
dc.identifier.issn1027-5487
dc.identifier.officialurlhttp://journal.taiwanmathsoc.org.tw/index.php/TJM/article/view/463/349
dc.identifier.relatedurlhttp://tjm.math.ntu.edu.tw/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50457
dc.issue.number4
dc.journal.titleTaiwanese Journal of Mathematics
dc.language.isoeng
dc.page.final1269
dc.page.initial1257
dc.publisherMathematical Soc Rep China
dc.relation.projectIDMTM 2006-04837.
dc.relation.projectIDMTM 2006-03531
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordRiemann integrable
dc.subject.keywordLebesgue integrable
dc.subject.keywordContinuous unbounded functions
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleLineability, spaceability, and algebrability of certain subsets of function spaces.
dc.typejournal article
dc.volume.number13
dcterms.referencesR. M. Aron, D. Garcia and M. Maestre, Linearity in non-linear problems, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 95(1) (2001), 7-12. R. M. Aron, V. I. Gurariy and J. B. Seoane-Sepulveda,Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc., 133 (2005), 795-803. R. M. Aron, D. Perez-Garcla and J. B. Seoane-Sepulveda,Algebrability of the set of non-convergent Fourier series, Studia Math., 175(1) (2006), 83-90. R. M. Aron and J. B. Seoane-Sepulveda, Algebrability of the set of everywhere surjective functions on C, Bull. Belg.Math. Soc. Simon Stevin, 14(1) (2007),25-31. F. Bayart and L. Quarta, Algebras in sets of queer functions, Isr. J. Math., 158 (2007), 285-296. P. Enflo and V. I. Gurariy, On lineability and spaceability of sets in function spaces,Preprint. V. P. Fonf, V. I. Gurariy and M. I. Kadec, An infinite dimensional subspace of C[0, 1]consisting of nowhere differentiable functions, C. R. Acad. Bulgare Sci., 52(11-12)(1999), 13-16. D. Garcia, B. C. Grecu, M. Maestre, J. B. Seoane-Sepulveda. Infinite dimensional Banach spaces of functions with nonlinear properties. Preprint. F. J. Garcia-Pacheco, N. Palmberg and J. B. Seoane-Sepulveda, Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal. Appl., 326 (2007),929-939. B. Gelbaum and J. Olmsted, Counterexamples in analysis,Dover, 2003. V. I. Gurariy, Subspaces and bases in spaces of continuous functions (Russian), Dokl.Akad. Nauk SSSR, 167 (1966), 971-973. V. I. Gurariy, Linear spaces composed of nondifferentiable functions, C. R. Acad.Bulgare Sci., 44(5) (1991), 13-16. V. I. Gurariy and L. Quarta, On lineability of sets of continuous functions, J. Math.Anal. Appl., 294 (2004), 62-72. S. Hencl, Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Holder functions, Proc. Amer. Math.Soc., 128(12) (2000), 3505-3511. J. Lindenstrauss, On subspaces of Banach spaces without quasi-complements, Israel J. Math., 6 (1968), 36-38. J. R. Munkres, Topology (second edition), Prentice Hall,Upper Saddle River, NJ,2000. H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, Proc. Nat.Acad. Sci. U.S.A., 59 (1968), 361-364. H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp(μ) to Lr(ν), J. Funct. Analysis, 4 (1969), 176-214. W. Rudin, Principles of mathematical analysis, Third edition, McGraw-Hill Book Co., New York, 1976.
dspace.entity.typePublication
relation.isAuthorOfPublicationb4d8ca11-a569-40ec-bd29-90eba44f8f01
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoveryb4d8ca11-a569-40ec-bd29-90eba44f8f01

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seoane24.pdf
Size:
97.79 KB
Format:
Adobe Portable Document Format

Collections