Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

The use of equivalent temperature to analyse climate variability

dc.contributor.authorRibera, P.
dc.contributor.authorGallego, D.
dc.contributor.authorGimeno, L.
dc.contributor.authorPérez Campos, J. F.
dc.contributor.authorGarcía Herrera, Ricardo Francisco
dc.contributor.authorHernández, E.
dc.contributor.authorTorre, L. de la
dc.contributor.authorNieto, R.
dc.contributor.authorCalvo Fernández, Natalia
dc.date.accessioned2023-06-20T10:43:28Z
dc.date.available2023-06-20T10:43:28Z
dc.date.issued2004-04
dc.description© 2004 StudiaGeo s.r.o.
dc.description.abstractEquivalent temperature based in the NCEP/NCAR reanalysis database has been used as a simultaneous measure of temperature and humidity. Its variations during the 1958-1998 added to the effect of the inclusion of satellite data during the late seventies have been analyzed. An increase of the globally averaged equivalent temperature has been detected, the trend has been considerably greater during the first half of the study period and significant differences can be found between continental and oceanic areas. The relation of the trend with four of the main modes of climate variability has been assessed. The North Atlantic Oscillation and the Artic Oscillations are closely related to the equivalent temperature over the North Atlantic basin, extending toward Northern Asia in the second case. El Nino/Southern Oscillation and the Antarctic Oscillation seem to have a more global effect.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25691
dc.identifier.doi10.1023/B:SGEG.0000020841.53546.39
dc.identifier.issn0039-3169
dc.identifier.officialurlhttp://dx.doi.org/10.1023/B:SGEG.0000020841.53546.39
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51081
dc.issue.number2
dc.journal.titleStudia Geophysica et Geodaetica
dc.language.isoeng
dc.page.final468
dc.page.initial459
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu52
dc.subject.keywordNorth-Atlantic oscillation
dc.subject.keywordTrends
dc.subject.keywordReanalysis
dc.subject.keywordExtension
dc.subject.keywordHumidity
dc.subject.keywordSurface
dc.subject.keywordIndex
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleThe use of equivalent temperature to analyse climate variability
dc.typejournal article
dc.volume.number48
dcterms.referencesDíaz H.F. and Markgraff V. (Eds), 2000. El Niño and the Southern Oscillation. Cambridge University Press. Cambridge, 496 pp. Gaffen D.J. and Ross R.J., 1999. Climatology and trends of U.S. surface humidity and temperature. J. Climate, 12, 811–828. Gong D. and Wang S., 1999. Definition of the Antarctic Oscillation index. Geophys. Res. Lett., 26, 459–462. Hurrell J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676–679. Hurrell J.W., 1996. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665–668. Hurrell J.W. and Trenberth K.E., 1998. Difficulties in obtaining reliable temperature trends: reconciling the surface and satellite microwave sounding unit records. J. Climate, 11, 945–967. Jones P.D., Jönsson T. and Wheeler D., 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Clim., 17, 1433–1450. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Lectmaa A., Reynolds R., Jenne R. and Joseph D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–471. Kistler R., Kalnay E., Collins W., Saha S., White G., Woollen J., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., van den Dool H., Jenne R. and Fiorino M., 2001. The NCEP-NCAR 50-year reanalysis. Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267. Peixoto J.P. and Oort A.H., 1996. The climatology of relative humidity in the atmosphere. J. Climate, 9, 3443–3463. Randel D.L., Von der Haar T.H., Ringerund M.A., Stephens G.L., Greenwald T.J. and Combs C.L., 1996. A new global water vapor dataset. Bull. Amer. Meteorol. Soc., 77, 1233–1246. Ropelewski C.F. and Jones P.D., 1987. An extension of the Tahiti-Darwin Southern Oscillation Index. Monthly Weather Review, 115, 2161–2165. Ross R.J. and Elliot W.P., 1996. Tropospheric precipitable water: A radiosonde-based climatology. NOAA Tech. Memo. ERL-ARL-219, Springfield, VA., 132 pp Steadman R.G., 1984. A universal scale of apparent temperature. J. Clim. Appl. Meteorol., 23, 1674–1282. Thompson D.W. and Wallace J.M., 2000. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016. Von Storch H. and Zwiers F.W., 1999. Statistical Analysis in Climate Research. Cambridge University Press, 484 pp. Wallace J.M. 2000. North Atlantic Oscillation/Annular mode: Two paradigms-one phenomenon. Quart. J. Royal Meteorol. Soc., 126, 784–812.
dspace.entity.typePublication
relation.isAuthorOfPublication194b877d-c391-483e-9b29-31a99dff0a29
relation.isAuthorOfPublication3cfa985b-0ebd-44fb-b791-312638313455
relation.isAuthorOfPublication.latestForDiscovery3cfa985b-0ebd-44fb-b791-312638313455

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
calvofernandez21.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format

Collections