Extended Krein-Adler theorem for the translationally shape invariant potentials
dc.contributor.author | Gómez-Ullate Otaiza, David | |
dc.contributor.author | Grandati, Yves | |
dc.contributor.author | Milson, Robert | |
dc.date.accessioned | 2023-06-19T14:54:28Z | |
dc.date.available | 2023-06-19T14:54:28Z | |
dc.date.issued | 2014-04 | |
dc.description | © 2014 AIP Publishing LLC. | |
dc.description.abstract | Considering successive extensions of primary translationally shape invariant potentials, we enlarge the Krein-Adler theorem to mixed chains of state adding and state-deleting Darboux-Backlund transformations. It allows us to establish novel bi-linear Wronskian and determinantal identities for classical orthogonal polynomials. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30744 | |
dc.identifier.doi | 10.1063/1.4871443 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.4871443 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34706 | |
dc.issue.number | 4 | |
dc.journal.title | Journal of mathematical physics | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Exactly solvable potentials | |
dc.subject.keyword | Exceptional orthogonal polynomials | |
dc.subject.keyword | X-L Laguerre | |
dc.subject.keyword | Darboux transformations | |
dc.subject.keyword | Quantum-mechanics | |
dc.subject.keyword | Schrodinger-equation | |
dc.subject.keyword | Rational extensions | |
dc.subject.keyword | Supersymmetry | |
dc.subject.keyword | Factorization | |
dc.subject.keyword | Operators | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Extended Krein-Adler theorem for the translationally shape invariant potentials | |
dc.type | journal article | |
dc.volume.number | 55 | |
dcterms.references | 1 G. Darboux, “Sur une proposition relative aux equations linéaires,” C. R. Acad. Sci. 94, 1456–1459 (1882); http://arxiv.org/pdf/physics/9908003.pdf. 2 M. M. Crum, “Associated Sturm-Liouville systems,” Q. J. Math. 6, 121–127 (1955). 3 E. Schrodinger, “A method of determining quantum-mechanical eigenvalues and eigenfunctions,” Proc. R. Irish Acad. A46, 9–16 (1940); http://www.jstor.org/stable/20490744 4 L. Infeld and T. E. Hull, “The factorization method,” Rev. Mod. Phys. 23, 21–68 (1951). 5 D. Gómez-Ullate, N. Kamran, and R. Milson, “The Darboux transformation and algebraic deformations of shape invariant potentials,” J. Phys. A 37, 1789–1804 (2004). 6 D. Gómez-Ullate, N. Kamran, and R. Milson, “Supersymmetry and algebraic Darboux transformations,” J. Phys. A 37, 10065–10078 (2004). 7 D. Gómez-Ullate, N. Kamran, and R. Milson, “An extended class of orthogonal polynomials defined by a Sturm-Liouville problem,” J. Math. Anal. Appl. 359, 352 (2009). 8 D. Gómez-Ullate, N. Kamran, and R. Milson, “An extension of Bochner’s problem: Exceptional invariant subspaces,” J. Approx. Theory 162, 987–1006 (2010). 9 D. Gómez-Ullate, N. Kamran, and R. Milson, “Exceptional orthogonal polynomials and the Darboux transformation,” J. Phys. A 43, 434016 (2010). 10 D. Gómez-Ullate, N. Kamran, and R. Milson, “On orthogonal polynomials spanning a non- standard flag,” in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics Vol. 563, edited by P. Acosta-Humanez, F. Finkel, N. Kamran, and P. Olver (AMS, 2012). 11 D. Gómez-Ullate, N. Kamran, and R. Milson, “Two-step Darboux transformations and exceptional Laguerre polynomials,” J. Math. Anal. Appl. 387, 410–418 (2012). 12 D. Gómez-Ullate, N. Kamran, and R. Milson, “A conjecture on exceptional orthogonal polynomials,” Found. Comput. Math. 13, 615–666 (2013). 13 C. Quesne, “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry,” J. Phys. A 41, 392001 (2008). 14C. Quesne, “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics,” SIGMA 5, 084 (2009). 15B. Bagchi, C. Quesne, and R. Roychoudhury, “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry,” Pramana J. Phys. 73, 337–347 (2009). 16B. Bagchi and C. Quesne, “An update on PT -symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally-extended supersymmetric partners,” J. Phys. A 43, 305301 (2010). 17 S. Odake and R. Sasaki, “Infinitely many shape invariant potentials and new orthogonal polynomials,” Phys. Lett. B 679, 414–417 (2009). 18 S. Odake and R. Sasaki, “Another set of infinitely many exceptional (Xl) Laguerre polynomials,” Phys. Lett. B 684, 173–176 (2010). 19C.-L. Ho, S. Odake, and R. Sasaki, “Properties of the exceptional (Xl) Laguerre and Jacobi polynomials,” SIGMA 7, 107 (2011). 20 S. Odake and R. Sasaki, “Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials,” J. Math. Phys. 51, 053513 (2010). 21R. Sasaki, S. Tsujimoto, and A. Zhedanov, “Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations,” J. Phys. A 43, 315204 (2010). 22 S. Odake and R. Sasaki, “Exactly solvable quantum mechanics and infinite families of multi- indexed orthogonal polynomials,” Phys. Lett. B 702, 164–170 (2011). 23 S. Odake and R. Sasaki, “Krein–Adler transformations for shape-invariant potentials and pseudo virtual states,” J. Phys. A 46, 245201 (2013). 24 S. Odake and R. Sasaki, “Extensions of solvable potentials with finitely many discrete eigenstates,” J. Phys. A 46, 235205 (2013). 25 D. Dutta and P. Roy, “Conditionally exactly solvable potentials and exceptional orthogonal polynomials,” J. Math. Phys. 51, 042101 (2010). 26C.-L. Ho and R. Sasaki, “Zeros of the exceptional Laguerre and Jacobi polynomials,” SIGMA 7, 107 (2011). 27C.-L. Ho, R. Sasaki, and K. Takemura, “Confluence of apparent singularities in multi-indexed orthogonal polynomials: The Jacobi case,” J. Phys. A 46, 115205 (2013). 28 Y. Grandati and A. Bérard, “Solvable rational extension of translationally shape invariant potentials,” in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics Vol. 563, edited by P. Acosta-Humanez, F. Finkel, N. Kamran, and P. Olver (AMS, 2012). 29 Y. Grandati, “Solvable rational extensions of the isotonic oscillator,” Ann. Phys. 326, 2074– 2090 (2011). 30 Y. Grandati, “Solvable rational extensions of the Morse and Kepler-Coulomb potentials,” J. Math. Phys. 52, 103505 (2011). 31 Y. Grandati, “Multistep DBT and regular rational extensions of the isotonic oscillator,” Ann. Phys. 327, 2411 (2012). 32 Y. Grandati and A. Bérard, “Rational solutions for the Riccati-Schr odinger equations associated to translationally shape ¨ invariant potentials,” Ann. Phys. 325, 1235–1259 (2010). 33 Y. Grandati, “New rational extensions of solvable potentials with finite bound state spectrum,” Phys. Lett. A 376, 2866–2872 (2012). 34 Y. Grandati and C. Quesne, “Disconjugacy, regularity of multi-indexed rationally-extended potentials, and Laguerre exceptional polynomials,” J. Math. Phys. 54, 073512 (2013). 35 Y. Grandati and A. Bérard, “Comments on the generalized SUSY QM partnership for Darboux–Pöschl–Teller potential and exceptional Jacobi polynomials,” J. Eng. Math. 82, 161– 171 (2013). 36 A. Ramos, “On the new translational shape invariant potentials,” J. Phys. A 44, 342001 (2011). 37 A. Ramos, “Symmetries and the compatibility condition for the new translational shape invariant potentials,” Phys. Lett. A 376, 3499–3503 (2012). 38 F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. 39R. Dutt, A. Khare, and U. P. Sukhatme, “Supersymmetry, shape invariance and exactly solvable potentials,” Am. J. Phys. 56, 163–168 (1988). 40 L. Gendenshtein, “Derivation of exact spectra of the Schrodinger equation by means of supersymmetry,” JETP Lett. 38, 356–359 (1983); http://www.jetpletters.ac.ru/ps/1822/article_27857.shtml. 41C. V. Sukumar, “Supersymmetric quantum mechanics of one-dimensional systems,” J. Phys. A 18, 2917–2936 (1985). 42 D. Gomez-Ullate, Y. Grandati, and R. Milson, “Rational extensions of the quantum harmonic oscillator and exceptional ´ Hermite polynomials,” J. Phys. A 47, 015203 (2014). 43 P. Hartman, Ordinary Differential Equations (John Wiley, New York, 1964). 44W. A. Coppel, Disconjugacy (Springer, Berlin, 1971). 45 M. Bôcher, Lec¸ons sur les méthodes de Sturm (Gauthier-Villars, Paris, 1917), pp. 51–52. 46 V. Y. Derr, “The theory of disconjugacy for a second order linear differential equations,” e- print arXiv:0811.4636 [mathCA]. 47 G. Szegö, Orthogonal Polynomials (American Mathematical Society, Providence, 1975). 48 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953). 49C. Quesne, “Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials,” Mod. Phys. Lett. A 26, 1843–1852 (2011). 50 C. Quesne, “Rationally-extended radial oscillators and Laguerre exceptional orthogonal polynomials in kth-order SUSYQM,” Int. J. Mod. Phys. A 26, 5337–5347 (2011). 51C. Quesne, “Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen-Morse II and Eckart potentials,” SIGMA 8, 080 (2012). 52C. Quesne, “Revisiting (quasi-)exactly solvable rational extensions of the Morse potential,” Int. J. Mod. Phys. A 27, 1250073 (2012). 53 J. F. Carinena and A. Ramos, “Integrability of Riccati equation from a group theoretical viewpoint,” Int. J. Mod. Phys. A 14, 1935–1951 (1999). 54 J. F. Carinena, A. Ramos, and D. J. Fernandez, “Group theoretical approach to the intertwined hamiltonians,” Ann. Phys. 292, 42–66 (2001). 55 T. Muir, A Treatise on the Theory of Determinants (Dover, New York, 1960) (revised and enlarged by W. H. Metzler). 56R. Vein and P. Dale, Determinants and their Applications in Mathematical Physics (Springer- Verlag, New York, 1999). 57 M. G. Krein, “On a continuous analogue of a Christoffel formula from the theory of orthogonal polynomials,” Dokl. Akad. Nauk SSSR 113, 970 (1957). 58 V. E. Adler, “A modification of Crum method,” Theor. Math. Phys. 101, 1381–1386 (1994). 59 V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer-Verlag, Berlin, 1991). 60C. V. Sukumar, “Supersymmetry, factorization of the Schrodinger equation and an hamiltonian hierarchy,” ¨ J. Phys. A 18, L57–L61 (1985). 61 A. A. Andrianov, N. V. Borisov, and M. V. Ioffe, “The factorization method and quantum systems with equivalent energy spectra,” Phys. Lett. A 105, 19–22 (1984). 62 A. A. Andrianov, M. V. Ioffe, and V. P. Spiridonov, “Higher-derivative supersymmetry and the Witten index,” Phys. Lett. A 174, 273–279 (1993). 63 V. G. Bagrov and B. F. Samsonov, “Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics,” Theor. Math. Phys. 104, 1051–1060 (1995). 64 V. G. Bagrov and B. F. Samsonov, “Darboux transformation and elementary exact solutions of the Schrodinger equation,” Pramana J. Phys. 49, 563–580 (1997). 65B. F. Samsonov and I. N. Ovcharov, “Darboux transformation and exactly solvable potentials with quasi-equidistant spectrum,” Russ. Phys. J. 38, 765–771 (1995). 66 V. G. Bagrov, B. F. Samsonov, and L. A. Shekoyan, “N-order Darboux transformation and a spectral problem on semiaxis,” e-print arXiv:9804.032. 67B. F. Samsonov, “New possibilities for supersymmetry breakdown in quantum mechanics and second order irreducible Darboux transformations,” Phys. Lett. A 263, 274–280 (1999). 68 D. J. Fernández C, V. Hussin, and B. Mielnik, “A simple generation of exactly solvable anharmonic oscillators,” Phys. Lett. A 244, 309–316 (1998). 69 D. J. Fernández C, J. Negro, and L. M. Nieto, “Second-order supersymmetric periodic potentials,” Phys. Lett. A 275, 338–349 (2000). 70 D. J. Fernandez C, R. Muñoz, and A. Ramos, “Second order SUSY transformations with “complex energies”,Phys. Lett. A 308, 11–16 (2003). 71B. Mielnik, L. M. Nieto, and O. Rosas-Ortiz, “The finite difference algorithm for higher order supersymmetry,” Phys. Lett. A 269, 70–78 (2000). 72 A. A. Oblomkov, “Monodromy-free Schrodinger operators with quadratically increasing potentials,”Theor. Math. Phys. 121, 1574–1584 (1999). 73 J. J. Duistermaat and F. A. Grünbaum, “Differential equations in the spectral parameter,” Commun. Math. Phys. 103, 177–240 (1986). 74 O. A. Chalykh, “Darboux transformations for multidimensional Schrödinger operators,” Russ. Math. Surv. 53, 377–379 (1998). 75 Y. Y. Berest and A. P. Veselov, “On the singularities of potentials of exactly soluble Schrödinger equations and on Hadamard’s problem,” Russ. Math. Surv. 53, 208–209 (1998). 76 V. M. Goncharenko and A. P. Veselov, “Monodromy of the matrix Schródinger equations and Darboux transformations,” J. Phys. A 31, 5315–5326 (1998). 77 E. E. Shnol’, Appendix B in S. Dubov, V. M. Eleonskii, and N. E. Kulagin, “Equidistant spectra of anharmonic oscillators,” Chaos 4, 47–53 (1994). 78 V. M. Tkachuk, “Supersymmetric method for constructing quasi-exactly and conditionally- exactly solvable potentials,” J. Phys. A 32, 1291–1312 (1999). 79 G. E. Andrews, R. Askey, and R. Roy, Special Functions (Cambridge University Press, Cambridge, 2000). 80 A. Messiah, Mécanique Quantique T1 (Dunod, Paris, 1969). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1