Control tuning by genetic algorithm of a low scale model wind turbine
dc.book.title | 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) | |
dc.contributor.author | Andrade Aimara , Giordy Alexander | |
dc.contributor.author | Esteban San Román, Segundo | |
dc.contributor.author | Santos Peñas, Matilde | |
dc.contributor.editor | García Bringas, P. | |
dc.date.accessioned | 2025-01-24T12:39:17Z | |
dc.date.available | 2025-01-24T12:39:17Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The continuous rise of wind energy makes it necessary to design controllers that make turbines more and more efficient. However, control designs are usually developed in simulation, which does not consider the many factors that affect control in a real turbine. An intermediate step, before testing them on turbines, is to check them on prototypes. In this paper, a first design of a laboratory scale model of a wind turbine (WT) is proposed, with the aim of testing different control algorithms. The model is built with commercial hardware and “ad hoc” circuits. Two control loops have been implemented; an external loop that commands the electric charge, and an internal loop that controls the pitch of the blades. The controllers have been tuned first experimentally, obtaining the best possible behavior by trial and error. Using genetic algorithms, the most optimal values for the controller are obtained, improving the response of the system. The operating and functional modes of a real WT have been also replicated on the model using a microcontroller programmed with the Arduino IDE input-output. Results obtained using optimized conventional controllers prove the correct performance of the prototype. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (España) | |
dc.description.status | pub | |
dc.identifier.citation | Andrade Aimara, G.A., Esteban San Román, S., Santos, M. (2023). Control Tuning by Genetic Algorithm of a Low Scale Model Wind Turbine. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_50 | |
dc.identifier.doi | 10.1007/978-3-031-18050-7_50 | |
dc.identifier.essn | 2367-3389 | |
dc.identifier.isbn | 978-3-031-18049-1 | |
dc.identifier.issn | 2367-3370 | |
dc.identifier.officialurl | https://doi.org/10.1007/978-3-031-18050-7_50 | |
dc.identifier.relatedurl | http://2022.sococonference.eu/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/116033 | |
dc.language.iso | eng | |
dc.page.final | 524 | |
dc.page.initial | 515 | |
dc.publication.place | Salamanca | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Lecture Notes in Networks and Systems | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/ RTI2018–094902-B-C21/ES/ WINDWAVE. ANÁLISIS Y CONTROL DE UN DISPOSITIVO FLOTANTE HÍBRIDO DE ENERGÍA EÓLICA Y MARINA | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Wind turbine | |
dc.subject.keyword | Control | |
dc.subject.keyword | Genetic algorithms | |
dc.subject.keyword | Scale model | |
dc.subject.keyword | Prototype | |
dc.subject.keyword | Arduino | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.ucm | Electrónica (Informática) | |
dc.subject.ucm | Programación de ordenadores (Informática) | |
dc.subject.unesco | 3311.02 Ingeniería de Control | |
dc.subject.unesco | 3311.01 Tecnología de la Automatización | |
dc.title | Control tuning by genetic algorithm of a low scale model wind turbine | |
dc.type | book part | |
dc.type.hasVersion | VoR | |
dc.volume.number | 531 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 386f94e5-c78d-49d3-8046-ece83adf5ecc | |
relation.isAuthorOfPublication | 99cac82a-8d31-45a5-bb8d-8248a4d6fe7f | |
relation.isAuthorOfPublication.latestForDiscovery | 386f94e5-c78d-49d3-8046-ece83adf5ecc |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Lecture Notes in Networks and SystemsSOCO2022_39.pdf
- Size:
- 1.32 MB
- Format:
- Adobe Portable Document Format