Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Best simultaneous approximation in L-1 (mu, X)

dc.contributor.authorMendoza Casas, José
dc.contributor.authorPakhrou, Tijani
dc.date.accessioned2023-06-20T09:40:30Z
dc.date.available2023-06-20T09:40:30Z
dc.date.issued2007-04-02
dc.description.abstractLet X be a Banach space, (Omega, Sigma, mu) a finite measure space, and L-1 (mu, X) the Banach space of X-valued Bochner mu-integrable functions defined on Omega endowed with its usual norm. Let us suppose that Sigma(0) is a sub-sigma-algebra of Sigma, and let mu(0) be the restriction of mu to Sigma(0). Given a natural number n, let N be a monotonous norm in R-n. It is shown that if X is reflexive then L-1 (mu(0), X) is N-simultaneously proximinal in L-1 (mu, X) in the sense of Fathi et al. [Best simultaneous approximation in L-p(I, E), J. Approx. Theory 116 (2002), 369-379]. Some examples and remarks related with N-simultaneous proximinality are also given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipM.E.C
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16848
dc.identifier.doi10.1016/j.jat.2006.09.003
dc.identifier.issn0021-9045
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0021904506001687
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50160
dc.issue.number2
dc.journal.titleJournal of Approximation Theory
dc.language.isoeng
dc.page.final220
dc.page.initial212
dc.publisherAcademic Press-Elsevier Science
dc.relation.projectIDMTM2005-00082
dc.rights.accessRightsrestricted access
dc.subject.cdu517.982.22
dc.subject.keywordBanach space.
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleBest simultaneous approximation in L-1 (mu, X)
dc.typejournal article
dc.volume.number145
dcterms.referencesP. Cembranos, J. Mendoza, Banach spaces of vector-valued functions, Lecture Notes in Mathematics, vol. 1676, Springer, Berlin, 1997. M.M. Day, Normed Linear Spaces, third ed., Springer, New York, 1973. J. Diestel, J.J. Uhl Jr., Vector measures, Math. Surveys Monographs, vol. 15, American Mathematical Society, Providence, RI, 1977. R. Durier, Optimal locations and inner product spaces, J. Math. Anal. Appl. 207 (1997) 220–239. B. Fathi, D. Hussein, R. Khalil, Best simultaneous approximation in Lp (I,E), J. Approx. Theory 116 (2002) 369–379. A.L. Garkavi, The best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962) 87–106 (in Russian), translation in Amer. Math. Soc. Transl. 39 (1964) 111–132. S.V. Konyagin, A remark on renormings of nonreflexive spaces and the existence of a Chebyshev center, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1988) 81–82 (in Russian), translation in Moscow Univ. Math. Bull. 43 (2) (1988) 55–56. N.S. Papageorgiou, On best approximations in the Lebesgue–Bochner space L1 (X), Tamkang J. Math. 24 (1993) 303–307. T. Shintani, T. Ando, Best approximants in L1 -space, Z. Wahrschein. Verw. Gebiete 33 (1975) 33–39. L. Veselý, A characterization of reflexivity in the terms of the existence of generalized centers, Extracta Math. 8 (1993) 125–131. L. Veselý, Generalized centers of finite sets in Banach spaces, Acta Math. Univ. Comenian. (N.S.) 66 (1997) 83–115.
dspace.entity.typePublication
relation.isAuthorOfPublication3fdf00ed-ed02-482c-a736-bb87c2753a89
relation.isAuthorOfPublication.latestForDiscovery3fdf00ed-ed02-482c-a736-bb87c2753a89

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mendoza04.pdf
Size:
163.47 KB
Format:
Adobe Portable Document Format

Collections